Loading…

Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs

We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensibl...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-06, Vol.9 (12), p.1388
Main Authors: García, Andrés, López, Pablo Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63
container_end_page
container_issue 12
container_start_page 1388
container_title Mathematics (Basel)
container_volume 9
creator García, Andrés
López, Pablo Carlos
description We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.
doi_str_mv 10.3390/math9121388
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6</doaj_id><sourcerecordid>2545004390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIVKUnfiASRxTwksTxESqWSq16gJ6tSWy3qZI42I5E_x6XItS5zPbmzZtB6JbgB8YEfuwg7AShhJXlBZpQSnnKY_3yLL5GM-_3OJqIsExM0GrT6--ge9VUrU4-dPCJNclqDCO07SHZ9FUDXqvkGXzjk3UVoOljapztkrnthlaHODZWWwfDzt-gKwOt17M_P0Wb15fP-Xu6XL8t5k_LtGaUhpRAnbOSCYqhKDLFWMFzkxVRZqGVMccWplwbAyXPKa_iRRkTgGuoSwO6YFO0OPEqC3s5uKYDd5AWGvlbsG4rwYWmbrVURJhS5XWGcZnxQgmFCQemmcgxJvWR6-7ENTj7NWof5N6Oro_yJc2zCIqrcUTdn1C1s947bf63EiyP75dn72c_RS52FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545004390</pqid></control><display><type>article</type><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><source>Publicly Available Content (ProQuest)</source><creator>García, Andrés ; López, Pablo Carlos</creator><creatorcontrib>García, Andrés ; López, Pablo Carlos</creatorcontrib><description>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9121388</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>complete subgraphs ; Decomposition ; Eigenvectors ; Graph theory ; Mathematics ; mutually unbiased bases ; Pauli group</subject><ispartof>Mathematics (Basel), 2021-06, Vol.9 (12), p.1388</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</cites><orcidid>0000-0002-8757-6381 ; 0000-0002-5210-0981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2545004390/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545004390?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>García, Andrés</creatorcontrib><creatorcontrib>López, Pablo Carlos</creatorcontrib><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><title>Mathematics (Basel)</title><description>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</description><subject>complete subgraphs</subject><subject>Decomposition</subject><subject>Eigenvectors</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>mutually unbiased bases</subject><subject>Pauli group</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMlOwzAQtRBIVKUnfiASRxTwksTxESqWSq16gJ6tSWy3qZI42I5E_x6XItS5zPbmzZtB6JbgB8YEfuwg7AShhJXlBZpQSnnKY_3yLL5GM-_3OJqIsExM0GrT6--ge9VUrU4-dPCJNclqDCO07SHZ9FUDXqvkGXzjk3UVoOljapztkrnthlaHODZWWwfDzt-gKwOt17M_P0Wb15fP-Xu6XL8t5k_LtGaUhpRAnbOSCYqhKDLFWMFzkxVRZqGVMccWplwbAyXPKa_iRRkTgGuoSwO6YFO0OPEqC3s5uKYDd5AWGvlbsG4rwYWmbrVURJhS5XWGcZnxQgmFCQemmcgxJvWR6-7ENTj7NWof5N6Oro_yJc2zCIqrcUTdn1C1s947bf63EiyP75dn72c_RS52FQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>García, Andrés</creator><creator>López, Pablo Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8757-6381</orcidid><orcidid>https://orcid.org/0000-0002-5210-0981</orcidid></search><sort><creationdate>20210601</creationdate><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><author>García, Andrés ; López, Pablo Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complete subgraphs</topic><topic>Decomposition</topic><topic>Eigenvectors</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>mutually unbiased bases</topic><topic>Pauli group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Andrés</creatorcontrib><creatorcontrib>López, Pablo Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Andrés</au><au>López, Pablo Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>1388</spage><pages>1388-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9121388</doi><orcidid>https://orcid.org/0000-0002-8757-6381</orcidid><orcidid>https://orcid.org/0000-0002-5210-0981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-06, Vol.9 (12), p.1388
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6
source Publicly Available Content (ProQuest)
subjects complete subgraphs
Decomposition
Eigenvectors
Graph theory
Mathematics
mutually unbiased bases
Pauli group
title Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unextendible%20Sets%20of%20Mutually%20Unbiased%20Basis%20Obtained%20from%20Complete%20Subgraphs&rft.jtitle=Mathematics%20(Basel)&rft.au=Garc%C3%ADa,%20Andr%C3%A9s&rft.date=2021-06-01&rft.volume=9&rft.issue=12&rft.spage=1388&rft.pages=1388-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9121388&rft_dat=%3Cproquest_doaj_%3E2545004390%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545004390&rft_id=info:pmid/&rfr_iscdi=true