Loading…
Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs
We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensibl...
Saved in:
Published in: | Mathematics (Basel) 2021-06, Vol.9 (12), p.1388 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63 |
container_end_page | |
container_issue | 12 |
container_start_page | 1388 |
container_title | Mathematics (Basel) |
container_volume | 9 |
creator | García, Andrés López, Pablo Carlos |
description | We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits. |
doi_str_mv | 10.3390/math9121388 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6</doaj_id><sourcerecordid>2545004390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</originalsourceid><addsrcrecordid>eNpNUMlOwzAQtRBIVKUnfiASRxTwksTxESqWSq16gJ6tSWy3qZI42I5E_x6XItS5zPbmzZtB6JbgB8YEfuwg7AShhJXlBZpQSnnKY_3yLL5GM-_3OJqIsExM0GrT6--ge9VUrU4-dPCJNclqDCO07SHZ9FUDXqvkGXzjk3UVoOljapztkrnthlaHODZWWwfDzt-gKwOt17M_P0Wb15fP-Xu6XL8t5k_LtGaUhpRAnbOSCYqhKDLFWMFzkxVRZqGVMccWplwbAyXPKa_iRRkTgGuoSwO6YFO0OPEqC3s5uKYDd5AWGvlbsG4rwYWmbrVURJhS5XWGcZnxQgmFCQemmcgxJvWR6-7ENTj7NWof5N6Oro_yJc2zCIqrcUTdn1C1s947bf63EiyP75dn72c_RS52FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545004390</pqid></control><display><type>article</type><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><source>Publicly Available Content (ProQuest)</source><creator>García, Andrés ; López, Pablo Carlos</creator><creatorcontrib>García, Andrés ; López, Pablo Carlos</creatorcontrib><description>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9121388</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>complete subgraphs ; Decomposition ; Eigenvectors ; Graph theory ; Mathematics ; mutually unbiased bases ; Pauli group</subject><ispartof>Mathematics (Basel), 2021-06, Vol.9 (12), p.1388</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</cites><orcidid>0000-0002-8757-6381 ; 0000-0002-5210-0981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2545004390/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545004390?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>García, Andrés</creatorcontrib><creatorcontrib>López, Pablo Carlos</creatorcontrib><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><title>Mathematics (Basel)</title><description>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</description><subject>complete subgraphs</subject><subject>Decomposition</subject><subject>Eigenvectors</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>mutually unbiased bases</subject><subject>Pauli group</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMlOwzAQtRBIVKUnfiASRxTwksTxESqWSq16gJ6tSWy3qZI42I5E_x6XItS5zPbmzZtB6JbgB8YEfuwg7AShhJXlBZpQSnnKY_3yLL5GM-_3OJqIsExM0GrT6--ge9VUrU4-dPCJNclqDCO07SHZ9FUDXqvkGXzjk3UVoOljapztkrnthlaHODZWWwfDzt-gKwOt17M_P0Wb15fP-Xu6XL8t5k_LtGaUhpRAnbOSCYqhKDLFWMFzkxVRZqGVMccWplwbAyXPKa_iRRkTgGuoSwO6YFO0OPEqC3s5uKYDd5AWGvlbsG4rwYWmbrVURJhS5XWGcZnxQgmFCQemmcgxJvWR6-7ENTj7NWof5N6Oro_yJc2zCIqrcUTdn1C1s947bf63EiyP75dn72c_RS52FQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>García, Andrés</creator><creator>López, Pablo Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8757-6381</orcidid><orcidid>https://orcid.org/0000-0002-5210-0981</orcidid></search><sort><creationdate>20210601</creationdate><title>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</title><author>García, Andrés ; López, Pablo Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>complete subgraphs</topic><topic>Decomposition</topic><topic>Eigenvectors</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>mutually unbiased bases</topic><topic>Pauli group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Andrés</creatorcontrib><creatorcontrib>López, Pablo Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Andrés</au><au>López, Pablo Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>1388</spage><pages>1388-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9121388</doi><orcidid>https://orcid.org/0000-0002-8757-6381</orcidid><orcidid>https://orcid.org/0000-0002-5210-0981</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2021-06, Vol.9 (12), p.1388 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d19f8d5c4008476d9d017a3e395001c6 |
source | Publicly Available Content (ProQuest) |
subjects | complete subgraphs Decomposition Eigenvectors Graph theory Mathematics mutually unbiased bases Pauli group |
title | Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unextendible%20Sets%20of%20Mutually%20Unbiased%20Basis%20Obtained%20from%20Complete%20Subgraphs&rft.jtitle=Mathematics%20(Basel)&rft.au=Garc%C3%ADa,%20Andr%C3%A9s&rft.date=2021-06-01&rft.volume=9&rft.issue=12&rft.spage=1388&rft.pages=1388-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9121388&rft_dat=%3Cproquest_doaj_%3E2545004390%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-1ac5383920a664d33675f462226edff3839027effa87527b388439a0cac8fae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545004390&rft_id=info:pmid/&rfr_iscdi=true |