Loading…

Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test

The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with in-depth neuropsychological batteries. A new tool,...

Full description

Saved in:
Bibliographic Details
Published in:NPJ Parkinson's Disease 2022-04, Vol.8 (1), p.42-9, Article 42
Main Authors: Ortelli, Paola, Ferrazzoli, Davide, Versace, Viviana, Cian, Veronica, Zarucchi, Marianna, Gusmeroli, Anna, Canesi, Margherita, Frazzitta, Giuseppe, Volpe, Daniele, Ricciardi, Lucia, Nardone, Raffaele, Ruffini, Ingrid, Saltuari, Leopold, Sebastianelli, Luca, Baranzini, Daniele, Maestri, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043
cites cdi_FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043
container_end_page 9
container_issue 1
container_start_page 42
container_title NPJ Parkinson's Disease
container_volume 8
creator Ortelli, Paola
Ferrazzoli, Davide
Versace, Viviana
Cian, Veronica
Zarucchi, Marianna
Gusmeroli, Anna
Canesi, Margherita
Frazzitta, Giuseppe
Volpe, Daniele
Ricciardi, Lucia
Nardone, Raffaele
Ruffini, Ingrid
Saltuari, Leopold
Sebastianelli, Luca
Baranzini, Daniele
Maestri, Roberto
description The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with in-depth neuropsychological batteries. A new tool, we named CoMDA (Cognition in Movement Disorders Assessment), was composed by merging Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery (FAB). In total, 500 patients (400 with Parkinson’s disease, 41 with vascular parkinsonism, 31 with progressive supranuclear palsy, and 28 with multiple system atrophy) underwent CoMDA (level 1–L1) and in-depth neuropsychological battery (level 2–L2). Machine learning was developed to classify the CoMDA score and obtain an accurate prediction of the cognitive profile along three different classes: normal cognition (NC), mild cognitive impairment (MCI), and impaired cognition (IC). The classification accuracy of CoMDA, assessed by ROC analysis, was compared with MMSE, MoCA, and FAB. The area under the curve (AUC) of CoMDA was significantly higher than that of MMSE, MoCA and FAB ( p  
doi_str_mv 10.1038/s41531-022-00304-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1a477b8b36947cc87d083bf2d306c9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1a477b8b36947cc87d083bf2d306c9a</doaj_id><sourcerecordid>2649216930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCVzHdhxvkFDFT6VKRYK95dg3qYfEDnam0gwvj2dSSsuClS373M8-R6coXhJ4S4C27xIjnJIK6roCoMCq_ZPitKaCVi1w8fTB_qQ4T2kDAIQ1reTwvDihnBFgTJ4Wv67nxU1urxcXfBn60oTBu8XdYqlTwpQm9EvpfPlVxx_Op-BdmlLZ7Uo9z-PO-aHUcXG9M06PWbfgOLoBvcFyCaXOuGmOeIM-HZDJRER_GFowLS-KZ70eE57frWfFt08fv198qa6uP19efLiqDGewVMR2QjPK0SCnmljGsBESIRtobWetpKKuOQcQPaOk4xy1BSkZ6XU2Sc-Ky5Vqg96oObpJx50K2qnjQYiDOjgwIypLNBOiazvaSCaMaYWFlnZ9bSk0RurMer-y5m03oTU5m6jHR9DHN97dqCHcKpnTF5xmwJs7QAw_tzkDNblkcmbaY9gmVTdM8rZtWZ2lr_-RbsI2-hzUUVWTRlLIqnpVmRhSitjff4aAOhRFrUVRuSjqWBS1z0OvHtq4H_lTiyygqyDlKz9g_Pv2f7C_AY0_zC0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649216930</pqid></control><display><type>article</type><title>Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ortelli, Paola ; Ferrazzoli, Davide ; Versace, Viviana ; Cian, Veronica ; Zarucchi, Marianna ; Gusmeroli, Anna ; Canesi, Margherita ; Frazzitta, Giuseppe ; Volpe, Daniele ; Ricciardi, Lucia ; Nardone, Raffaele ; Ruffini, Ingrid ; Saltuari, Leopold ; Sebastianelli, Luca ; Baranzini, Daniele ; Maestri, Roberto</creator><creatorcontrib>Ortelli, Paola ; Ferrazzoli, Davide ; Versace, Viviana ; Cian, Veronica ; Zarucchi, Marianna ; Gusmeroli, Anna ; Canesi, Margherita ; Frazzitta, Giuseppe ; Volpe, Daniele ; Ricciardi, Lucia ; Nardone, Raffaele ; Ruffini, Ingrid ; Saltuari, Leopold ; Sebastianelli, Luca ; Baranzini, Daniele ; Maestri, Roberto</creatorcontrib><description>The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with in-depth neuropsychological batteries. A new tool, we named CoMDA (Cognition in Movement Disorders Assessment), was composed by merging Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery (FAB). In total, 500 patients (400 with Parkinson’s disease, 41 with vascular parkinsonism, 31 with progressive supranuclear palsy, and 28 with multiple system atrophy) underwent CoMDA (level 1–L1) and in-depth neuropsychological battery (level 2–L2). Machine learning was developed to classify the CoMDA score and obtain an accurate prediction of the cognitive profile along three different classes: normal cognition (NC), mild cognitive impairment (MCI), and impaired cognition (IC). The classification accuracy of CoMDA, assessed by ROC analysis, was compared with MMSE, MoCA, and FAB. The area under the curve (AUC) of CoMDA was significantly higher than that of MMSE, MoCA and FAB ( p  &lt; 0.0001, p  = 0.028 and p  = 0.0007, respectively). Among 15 different algorithmic methods, the Quadratic Discriminant Analysis algorithm (CoMDA-ML) showed higher overall-metrics performance levels in predictive performance. Considering L2 as a 3-level continuous feature, CoMDA-ML produces accurate and generalizable classifications: micro-average ROC curve, AUC = 0.81; and AUC = 0.85 for NC, 0.67 for MCI, and 0.83 for IC. CoMDA and COMDA-ML are reliable and time-sparing tools, accurate in classifying cognitive profile in parkinsonisms. This study has been registered on ClinicalTrials.gov (NCT04858893).</description><identifier>ISSN: 2373-8057</identifier><identifier>EISSN: 2373-8057</identifier><identifier>DOI: 10.1038/s41531-022-00304-z</identifier><identifier>PMID: 35410449</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/617/375/346/1718 ; 692/700/139/422 ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Brain diseases ; Cognition &amp; reasoning ; Discriminant analysis ; Neurology ; Neuropsychology ; Neurosciences ; Parkinson's disease</subject><ispartof>NPJ Parkinson's Disease, 2022-04, Vol.8 (1), p.42-9, Article 42</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043</citedby><cites>FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043</cites><orcidid>0000-0002-2873-0430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649216930/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649216930?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35410449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortelli, Paola</creatorcontrib><creatorcontrib>Ferrazzoli, Davide</creatorcontrib><creatorcontrib>Versace, Viviana</creatorcontrib><creatorcontrib>Cian, Veronica</creatorcontrib><creatorcontrib>Zarucchi, Marianna</creatorcontrib><creatorcontrib>Gusmeroli, Anna</creatorcontrib><creatorcontrib>Canesi, Margherita</creatorcontrib><creatorcontrib>Frazzitta, Giuseppe</creatorcontrib><creatorcontrib>Volpe, Daniele</creatorcontrib><creatorcontrib>Ricciardi, Lucia</creatorcontrib><creatorcontrib>Nardone, Raffaele</creatorcontrib><creatorcontrib>Ruffini, Ingrid</creatorcontrib><creatorcontrib>Saltuari, Leopold</creatorcontrib><creatorcontrib>Sebastianelli, Luca</creatorcontrib><creatorcontrib>Baranzini, Daniele</creatorcontrib><creatorcontrib>Maestri, Roberto</creatorcontrib><title>Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test</title><title>NPJ Parkinson's Disease</title><addtitle>npj Parkinsons Dis</addtitle><addtitle>NPJ Parkinsons Dis</addtitle><description>The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with in-depth neuropsychological batteries. A new tool, we named CoMDA (Cognition in Movement Disorders Assessment), was composed by merging Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery (FAB). In total, 500 patients (400 with Parkinson’s disease, 41 with vascular parkinsonism, 31 with progressive supranuclear palsy, and 28 with multiple system atrophy) underwent CoMDA (level 1–L1) and in-depth neuropsychological battery (level 2–L2). Machine learning was developed to classify the CoMDA score and obtain an accurate prediction of the cognitive profile along three different classes: normal cognition (NC), mild cognitive impairment (MCI), and impaired cognition (IC). The classification accuracy of CoMDA, assessed by ROC analysis, was compared with MMSE, MoCA, and FAB. The area under the curve (AUC) of CoMDA was significantly higher than that of MMSE, MoCA and FAB ( p  &lt; 0.0001, p  = 0.028 and p  = 0.0007, respectively). Among 15 different algorithmic methods, the Quadratic Discriminant Analysis algorithm (CoMDA-ML) showed higher overall-metrics performance levels in predictive performance. Considering L2 as a 3-level continuous feature, CoMDA-ML produces accurate and generalizable classifications: micro-average ROC curve, AUC = 0.81; and AUC = 0.85 for NC, 0.67 for MCI, and 0.83 for IC. CoMDA and COMDA-ML are reliable and time-sparing tools, accurate in classifying cognitive profile in parkinsonisms. This study has been registered on ClinicalTrials.gov (NCT04858893).</description><subject>692/617/375/346/1718</subject><subject>692/700/139/422</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain diseases</subject><subject>Cognition &amp; reasoning</subject><subject>Discriminant analysis</subject><subject>Neurology</subject><subject>Neuropsychology</subject><subject>Neurosciences</subject><subject>Parkinson's disease</subject><issn>2373-8057</issn><issn>2373-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCVzHdhxvkFDFT6VKRYK95dg3qYfEDnam0gwvj2dSSsuClS373M8-R6coXhJ4S4C27xIjnJIK6roCoMCq_ZPitKaCVi1w8fTB_qQ4T2kDAIQ1reTwvDihnBFgTJ4Wv67nxU1urxcXfBn60oTBu8XdYqlTwpQm9EvpfPlVxx_Op-BdmlLZ7Uo9z-PO-aHUcXG9M06PWbfgOLoBvcFyCaXOuGmOeIM-HZDJRER_GFowLS-KZ70eE57frWfFt08fv198qa6uP19efLiqDGewVMR2QjPK0SCnmljGsBESIRtobWetpKKuOQcQPaOk4xy1BSkZ6XU2Sc-Ky5Vqg96oObpJx50K2qnjQYiDOjgwIypLNBOiazvaSCaMaYWFlnZ9bSk0RurMer-y5m03oTU5m6jHR9DHN97dqCHcKpnTF5xmwJs7QAw_tzkDNblkcmbaY9gmVTdM8rZtWZ2lr_-RbsI2-hzUUVWTRlLIqnpVmRhSitjff4aAOhRFrUVRuSjqWBS1z0OvHtq4H_lTiyygqyDlKz9g_Pv2f7C_AY0_zC0</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Ortelli, Paola</creator><creator>Ferrazzoli, Davide</creator><creator>Versace, Viviana</creator><creator>Cian, Veronica</creator><creator>Zarucchi, Marianna</creator><creator>Gusmeroli, Anna</creator><creator>Canesi, Margherita</creator><creator>Frazzitta, Giuseppe</creator><creator>Volpe, Daniele</creator><creator>Ricciardi, Lucia</creator><creator>Nardone, Raffaele</creator><creator>Ruffini, Ingrid</creator><creator>Saltuari, Leopold</creator><creator>Sebastianelli, Luca</creator><creator>Baranzini, Daniele</creator><creator>Maestri, Roberto</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2873-0430</orcidid></search><sort><creationdate>20220411</creationdate><title>Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test</title><author>Ortelli, Paola ; Ferrazzoli, Davide ; Versace, Viviana ; Cian, Veronica ; Zarucchi, Marianna ; Gusmeroli, Anna ; Canesi, Margherita ; Frazzitta, Giuseppe ; Volpe, Daniele ; Ricciardi, Lucia ; Nardone, Raffaele ; Ruffini, Ingrid ; Saltuari, Leopold ; Sebastianelli, Luca ; Baranzini, Daniele ; Maestri, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/617/375/346/1718</topic><topic>692/700/139/422</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain diseases</topic><topic>Cognition &amp; reasoning</topic><topic>Discriminant analysis</topic><topic>Neurology</topic><topic>Neuropsychology</topic><topic>Neurosciences</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortelli, Paola</creatorcontrib><creatorcontrib>Ferrazzoli, Davide</creatorcontrib><creatorcontrib>Versace, Viviana</creatorcontrib><creatorcontrib>Cian, Veronica</creatorcontrib><creatorcontrib>Zarucchi, Marianna</creatorcontrib><creatorcontrib>Gusmeroli, Anna</creatorcontrib><creatorcontrib>Canesi, Margherita</creatorcontrib><creatorcontrib>Frazzitta, Giuseppe</creatorcontrib><creatorcontrib>Volpe, Daniele</creatorcontrib><creatorcontrib>Ricciardi, Lucia</creatorcontrib><creatorcontrib>Nardone, Raffaele</creatorcontrib><creatorcontrib>Ruffini, Ingrid</creatorcontrib><creatorcontrib>Saltuari, Leopold</creatorcontrib><creatorcontrib>Sebastianelli, Luca</creatorcontrib><creatorcontrib>Baranzini, Daniele</creatorcontrib><creatorcontrib>Maestri, Roberto</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>NPJ Parkinson's Disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortelli, Paola</au><au>Ferrazzoli, Davide</au><au>Versace, Viviana</au><au>Cian, Veronica</au><au>Zarucchi, Marianna</au><au>Gusmeroli, Anna</au><au>Canesi, Margherita</au><au>Frazzitta, Giuseppe</au><au>Volpe, Daniele</au><au>Ricciardi, Lucia</au><au>Nardone, Raffaele</au><au>Ruffini, Ingrid</au><au>Saltuari, Leopold</au><au>Sebastianelli, Luca</au><au>Baranzini, Daniele</au><au>Maestri, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test</atitle><jtitle>NPJ Parkinson's Disease</jtitle><stitle>npj Parkinsons Dis</stitle><addtitle>NPJ Parkinsons Dis</addtitle><date>2022-04-11</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>42</spage><epage>9</epage><pages>42-9</pages><artnum>42</artnum><issn>2373-8057</issn><eissn>2373-8057</eissn><abstract>The assessment of cognitive deficits is pivotal for diagnosis and management in patients with parkinsonisms. Low levels of correspondence are observed between evaluations assessed with screening cognitive tests in comparison with those assessed with in-depth neuropsychological batteries. A new tool, we named CoMDA (Cognition in Movement Disorders Assessment), was composed by merging Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery (FAB). In total, 500 patients (400 with Parkinson’s disease, 41 with vascular parkinsonism, 31 with progressive supranuclear palsy, and 28 with multiple system atrophy) underwent CoMDA (level 1–L1) and in-depth neuropsychological battery (level 2–L2). Machine learning was developed to classify the CoMDA score and obtain an accurate prediction of the cognitive profile along three different classes: normal cognition (NC), mild cognitive impairment (MCI), and impaired cognition (IC). The classification accuracy of CoMDA, assessed by ROC analysis, was compared with MMSE, MoCA, and FAB. The area under the curve (AUC) of CoMDA was significantly higher than that of MMSE, MoCA and FAB ( p  &lt; 0.0001, p  = 0.028 and p  = 0.0007, respectively). Among 15 different algorithmic methods, the Quadratic Discriminant Analysis algorithm (CoMDA-ML) showed higher overall-metrics performance levels in predictive performance. Considering L2 as a 3-level continuous feature, CoMDA-ML produces accurate and generalizable classifications: micro-average ROC curve, AUC = 0.81; and AUC = 0.85 for NC, 0.67 for MCI, and 0.83 for IC. CoMDA and COMDA-ML are reliable and time-sparing tools, accurate in classifying cognitive profile in parkinsonisms. This study has been registered on ClinicalTrials.gov (NCT04858893).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35410449</pmid><doi>10.1038/s41531-022-00304-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2873-0430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-8057
ispartof NPJ Parkinson's Disease, 2022-04, Vol.8 (1), p.42-9, Article 42
issn 2373-8057
2373-8057
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1a477b8b36947cc87d083bf2d306c9a
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/617/375/346/1718
692/700/139/422
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Brain diseases
Cognition & reasoning
Discriminant analysis
Neurology
Neuropsychology
Neurosciences
Parkinson's disease
title Optimization of cognitive assessment in Parkinsonisms by applying artificial intelligence to a comprehensive screening test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20cognitive%20assessment%20in%20Parkinsonisms%20by%20applying%20artificial%20intelligence%20to%20a%20comprehensive%20screening%20test&rft.jtitle=NPJ%20Parkinson's%20Disease&rft.au=Ortelli,%20Paola&rft.date=2022-04-11&rft.volume=8&rft.issue=1&rft.spage=42&rft.epage=9&rft.pages=42-9&rft.artnum=42&rft.issn=2373-8057&rft.eissn=2373-8057&rft_id=info:doi/10.1038/s41531-022-00304-z&rft_dat=%3Cproquest_doaj_%3E2649216930%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-1db7a435ece53a1d44e679e00448dbdd9372255007f431b55ead09941fa1043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649216930&rft_id=info:pmid/35410449&rfr_iscdi=true