Loading…
[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab
Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metast...
Saved in:
Published in: | Radiology and oncology 2020-07, Vol.54 (3), p.285-294 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13 |
---|---|
cites | cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13 |
container_end_page | 294 |
container_issue | 3 |
container_start_page | 285 |
container_title | Radiology and oncology |
container_volume | 54 |
creator | Valentinuzzi, Damijan Vrankar, Martina Boc, Nina Ahac, Valentina Zupancic, Ziga Unk, Mojca Skalic, Katja Zagar, Ivana Studen, Andrej Simoncic, Urban Eickhoff, Jens Jeraj, Robert |
description | Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival. |
doi_str_mv | 10.2478/raon-2020-0042 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e</doaj_id><sourcerecordid>2429057545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</originalsourceid><addsrcrecordid>eNptkkFrFDEUxwdRbK1ePQe81MPUTJKZZECEsu3WhUpF60kkZJI3u1lmkmmSsaxfwq_sTLeoFU95JL_34-Xxz7KXBT4hjIs3QXmXE0xwjjEjj7LDohRFTgnmj_-qD7JnMW4xLitCxNPsgBJOKlLTw-zn10Isvy3PLtDH82tk-350Pm0gqGGHgjLW91ZHFO3aqTQGQMf20-nZ6urDavH5NRoCGKtTRAHi4F0E5FvkpoFir7ou19B1qBvdGmnlNAQ0qGTBTXwKoBIYdGvTBg3QN8F39sfYq-Z59qRVXYQX9-dR9mV5fr14n19eXawWp5e5LguWckOBGFpBrXlrMKG0wVRXDRBeYWCENaxVApOKVxpwTQgWFXBe1AKqioMp6FG22nuNV1s5BNursJNeWXl34cNaqpCs7kCaQnEDJeBGl0wUpBGKMq0FY60GRWFyvdu7hrHpwejpi0F1D6QPX5zdyLX_LjnDdYX5JDi-FwR_M0JMsrdx3p5y4McoCSM1LnnJygl99Q-69WNw06ruKEpFzeqJOtlTOvgYA7S_hymwnHMj59zIOTdyzs3U8HbfcKu6BMHAOoy7qfhj_39jySgRJf0FfQvKYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429338949</pqid></control><display><type>article</type><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</creator><creatorcontrib>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</creatorcontrib><description>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</description><identifier>ISSN: 1581-3207</identifier><identifier>ISSN: 1318-2099</identifier><identifier>EISSN: 1581-3207</identifier><identifier>EISSN: 0485-893X</identifier><identifier>DOI: 10.2478/raon-2020-0042</identifier><identifier>PMID: 32726293</identifier><language>eng</language><publisher>Ljubljana: Sciendo</publisher><subject>[18f]fdg pet/ct ; anti-PD-1 ; Biomarkers ; Computed tomography ; F]FDG PET/CT ; Fluorine isotopes ; Immune checkpoint inhibitors ; Immunotherapy ; iRADIOMICS ; Lung cancer ; Metastases ; Metastasis ; Monoclonal antibodies ; Multivariate analysis ; Non-small cell lung carcinoma ; non-small-cell lung cancer ; Patients ; PD-L1 protein ; Pembrolizumab ; Positron emission tomography ; Radiomics ; radiomics analysis ; Regression analysis ; Small cell lung carcinoma ; Survival ; Targeted cancer therapy ; Tumors</subject><ispartof>Radiology and oncology, 2020-07, Vol.54 (3), p.285-294</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Damijan Valentinuzzi, Martina Vrankar, Nina Boc, Valentina Ahac, Ziga Zupancic, Mojca Unk, Katja Skalic, Ivana Zagar, Andrej Studen, Urban Simoncic, Jens Eickhoff, Robert Jeraj, published by Sciendo 2020 Damijan Valentinuzzi, Martina Vrankar, Nina Boc, Valentina Ahac, Ziga Zupancic, Mojca Unk, Katja Skalic, Ivana Zagar, Andrej Studen, Urban Simoncic, Jens Eickhoff, Robert Jeraj, published by Sciendo</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</citedby><cites>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429338949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Valentinuzzi, Damijan</creatorcontrib><creatorcontrib>Vrankar, Martina</creatorcontrib><creatorcontrib>Boc, Nina</creatorcontrib><creatorcontrib>Ahac, Valentina</creatorcontrib><creatorcontrib>Zupancic, Ziga</creatorcontrib><creatorcontrib>Unk, Mojca</creatorcontrib><creatorcontrib>Skalic, Katja</creatorcontrib><creatorcontrib>Zagar, Ivana</creatorcontrib><creatorcontrib>Studen, Andrej</creatorcontrib><creatorcontrib>Simoncic, Urban</creatorcontrib><creatorcontrib>Eickhoff, Jens</creatorcontrib><creatorcontrib>Jeraj, Robert</creatorcontrib><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><title>Radiology and oncology</title><description>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</description><subject>[18f]fdg pet/ct</subject><subject>anti-PD-1</subject><subject>Biomarkers</subject><subject>Computed tomography</subject><subject>F]FDG PET/CT</subject><subject>Fluorine isotopes</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunotherapy</subject><subject>iRADIOMICS</subject><subject>Lung cancer</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Monoclonal antibodies</subject><subject>Multivariate analysis</subject><subject>Non-small cell lung carcinoma</subject><subject>non-small-cell lung cancer</subject><subject>Patients</subject><subject>PD-L1 protein</subject><subject>Pembrolizumab</subject><subject>Positron emission tomography</subject><subject>Radiomics</subject><subject>radiomics analysis</subject><subject>Regression analysis</subject><subject>Small cell lung carcinoma</subject><subject>Survival</subject><subject>Targeted cancer therapy</subject><subject>Tumors</subject><issn>1581-3207</issn><issn>1318-2099</issn><issn>1581-3207</issn><issn>0485-893X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFrFDEUxwdRbK1ePQe81MPUTJKZZECEsu3WhUpF60kkZJI3u1lmkmmSsaxfwq_sTLeoFU95JL_34-Xxz7KXBT4hjIs3QXmXE0xwjjEjj7LDohRFTgnmj_-qD7JnMW4xLitCxNPsgBJOKlLTw-zn10Isvy3PLtDH82tk-350Pm0gqGGHgjLW91ZHFO3aqTQGQMf20-nZ6urDavH5NRoCGKtTRAHi4F0E5FvkpoFir7ou19B1qBvdGmnlNAQ0qGTBTXwKoBIYdGvTBg3QN8F39sfYq-Z59qRVXYQX9-dR9mV5fr14n19eXawWp5e5LguWckOBGFpBrXlrMKG0wVRXDRBeYWCENaxVApOKVxpwTQgWFXBe1AKqioMp6FG22nuNV1s5BNursJNeWXl34cNaqpCs7kCaQnEDJeBGl0wUpBGKMq0FY60GRWFyvdu7hrHpwejpi0F1D6QPX5zdyLX_LjnDdYX5JDi-FwR_M0JMsrdx3p5y4McoCSM1LnnJygl99Q-69WNw06ruKEpFzeqJOtlTOvgYA7S_hymwnHMj59zIOTdyzs3U8HbfcKu6BMHAOoy7qfhj_39jySgRJf0FfQvKYA</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Valentinuzzi, Damijan</creator><creator>Vrankar, Martina</creator><creator>Boc, Nina</creator><creator>Ahac, Valentina</creator><creator>Zupancic, Ziga</creator><creator>Unk, Mojca</creator><creator>Skalic, Katja</creator><creator>Zagar, Ivana</creator><creator>Studen, Andrej</creator><creator>Simoncic, Urban</creator><creator>Eickhoff, Jens</creator><creator>Jeraj, Robert</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200729</creationdate><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><author>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[18f]fdg pet/ct</topic><topic>anti-PD-1</topic><topic>Biomarkers</topic><topic>Computed tomography</topic><topic>F]FDG PET/CT</topic><topic>Fluorine isotopes</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunotherapy</topic><topic>iRADIOMICS</topic><topic>Lung cancer</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Monoclonal antibodies</topic><topic>Multivariate analysis</topic><topic>Non-small cell lung carcinoma</topic><topic>non-small-cell lung cancer</topic><topic>Patients</topic><topic>PD-L1 protein</topic><topic>Pembrolizumab</topic><topic>Positron emission tomography</topic><topic>Radiomics</topic><topic>radiomics analysis</topic><topic>Regression analysis</topic><topic>Small cell lung carcinoma</topic><topic>Survival</topic><topic>Targeted cancer therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentinuzzi, Damijan</creatorcontrib><creatorcontrib>Vrankar, Martina</creatorcontrib><creatorcontrib>Boc, Nina</creatorcontrib><creatorcontrib>Ahac, Valentina</creatorcontrib><creatorcontrib>Zupancic, Ziga</creatorcontrib><creatorcontrib>Unk, Mojca</creatorcontrib><creatorcontrib>Skalic, Katja</creatorcontrib><creatorcontrib>Zagar, Ivana</creatorcontrib><creatorcontrib>Studen, Andrej</creatorcontrib><creatorcontrib>Simoncic, Urban</creatorcontrib><creatorcontrib>Eickhoff, Jens</creatorcontrib><creatorcontrib>Jeraj, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Radiology and oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentinuzzi, Damijan</au><au>Vrankar, Martina</au><au>Boc, Nina</au><au>Ahac, Valentina</au><au>Zupancic, Ziga</au><au>Unk, Mojca</au><au>Skalic, Katja</au><au>Zagar, Ivana</au><au>Studen, Andrej</au><au>Simoncic, Urban</au><au>Eickhoff, Jens</au><au>Jeraj, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</atitle><jtitle>Radiology and oncology</jtitle><date>2020-07-29</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>1581-3207</issn><issn>1318-2099</issn><eissn>1581-3207</eissn><eissn>0485-893X</eissn><abstract>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</abstract><cop>Ljubljana</cop><pub>Sciendo</pub><pmid>32726293</pmid><doi>10.2478/raon-2020-0042</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1581-3207 |
ispartof | Radiology and oncology, 2020-07, Vol.54 (3), p.285-294 |
issn | 1581-3207 1318-2099 1581-3207 0485-893X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | [18f]fdg pet/ct anti-PD-1 Biomarkers Computed tomography F]FDG PET/CT Fluorine isotopes Immune checkpoint inhibitors Immunotherapy iRADIOMICS Lung cancer Metastases Metastasis Monoclonal antibodies Multivariate analysis Non-small cell lung carcinoma non-small-cell lung cancer Patients PD-L1 protein Pembrolizumab Positron emission tomography Radiomics radiomics analysis Regression analysis Small cell lung carcinoma Survival Targeted cancer therapy Tumors |
title | [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B18F%5DFDG%20PET%20immunotherapy%20radiomics%20signature%20(iRADIOMICS)%20predicts%20response%20of%20non-small-cell%20lung%20cancer%20patients%20treated%20with%20pembrolizumab&rft.jtitle=Radiology%20and%20oncology&rft.au=Valentinuzzi,%20Damijan&rft.date=2020-07-29&rft.volume=54&rft.issue=3&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=1581-3207&rft.eissn=1581-3207&rft_id=info:doi/10.2478/raon-2020-0042&rft_dat=%3Cproquest_doaj_%3E2429057545%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429338949&rft_id=info:pmid/32726293&rfr_iscdi=true |