Loading…

[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab

Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metast...

Full description

Saved in:
Bibliographic Details
Published in:Radiology and oncology 2020-07, Vol.54 (3), p.285-294
Main Authors: Valentinuzzi, Damijan, Vrankar, Martina, Boc, Nina, Ahac, Valentina, Zupancic, Ziga, Unk, Mojca, Skalic, Katja, Zagar, Ivana, Studen, Andrej, Simoncic, Urban, Eickhoff, Jens, Jeraj, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13
cites cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13
container_end_page 294
container_issue 3
container_start_page 285
container_title Radiology and oncology
container_volume 54
creator Valentinuzzi, Damijan
Vrankar, Martina
Boc, Nina
Ahac, Valentina
Zupancic, Ziga
Unk, Mojca
Skalic, Katja
Zagar, Ivana
Studen, Andrej
Simoncic, Urban
Eickhoff, Jens
Jeraj, Robert
description Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.
doi_str_mv 10.2478/raon-2020-0042
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e</doaj_id><sourcerecordid>2429057545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</originalsourceid><addsrcrecordid>eNptkkFrFDEUxwdRbK1ePQe81MPUTJKZZECEsu3WhUpF60kkZJI3u1lmkmmSsaxfwq_sTLeoFU95JL_34-Xxz7KXBT4hjIs3QXmXE0xwjjEjj7LDohRFTgnmj_-qD7JnMW4xLitCxNPsgBJOKlLTw-zn10Isvy3PLtDH82tk-350Pm0gqGGHgjLW91ZHFO3aqTQGQMf20-nZ6urDavH5NRoCGKtTRAHi4F0E5FvkpoFir7ou19B1qBvdGmnlNAQ0qGTBTXwKoBIYdGvTBg3QN8F39sfYq-Z59qRVXYQX9-dR9mV5fr14n19eXawWp5e5LguWckOBGFpBrXlrMKG0wVRXDRBeYWCENaxVApOKVxpwTQgWFXBe1AKqioMp6FG22nuNV1s5BNursJNeWXl34cNaqpCs7kCaQnEDJeBGl0wUpBGKMq0FY60GRWFyvdu7hrHpwejpi0F1D6QPX5zdyLX_LjnDdYX5JDi-FwR_M0JMsrdx3p5y4McoCSM1LnnJygl99Q-69WNw06ruKEpFzeqJOtlTOvgYA7S_hymwnHMj59zIOTdyzs3U8HbfcKu6BMHAOoy7qfhj_39jySgRJf0FfQvKYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429338949</pqid></control><display><type>article</type><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</creator><creatorcontrib>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</creatorcontrib><description>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</description><identifier>ISSN: 1581-3207</identifier><identifier>ISSN: 1318-2099</identifier><identifier>EISSN: 1581-3207</identifier><identifier>EISSN: 0485-893X</identifier><identifier>DOI: 10.2478/raon-2020-0042</identifier><identifier>PMID: 32726293</identifier><language>eng</language><publisher>Ljubljana: Sciendo</publisher><subject>[18f]fdg pet/ct ; anti-PD-1 ; Biomarkers ; Computed tomography ; F]FDG PET/CT ; Fluorine isotopes ; Immune checkpoint inhibitors ; Immunotherapy ; iRADIOMICS ; Lung cancer ; Metastases ; Metastasis ; Monoclonal antibodies ; Multivariate analysis ; Non-small cell lung carcinoma ; non-small-cell lung cancer ; Patients ; PD-L1 protein ; Pembrolizumab ; Positron emission tomography ; Radiomics ; radiomics analysis ; Regression analysis ; Small cell lung carcinoma ; Survival ; Targeted cancer therapy ; Tumors</subject><ispartof>Radiology and oncology, 2020-07, Vol.54 (3), p.285-294</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Damijan Valentinuzzi, Martina Vrankar, Nina Boc, Valentina Ahac, Ziga Zupancic, Mojca Unk, Katja Skalic, Ivana Zagar, Andrej Studen, Urban Simoncic, Jens Eickhoff, Robert Jeraj, published by Sciendo 2020 Damijan Valentinuzzi, Martina Vrankar, Nina Boc, Valentina Ahac, Ziga Zupancic, Mojca Unk, Katja Skalic, Ivana Zagar, Andrej Studen, Urban Simoncic, Jens Eickhoff, Robert Jeraj, published by Sciendo</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</citedby><cites>FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429338949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Valentinuzzi, Damijan</creatorcontrib><creatorcontrib>Vrankar, Martina</creatorcontrib><creatorcontrib>Boc, Nina</creatorcontrib><creatorcontrib>Ahac, Valentina</creatorcontrib><creatorcontrib>Zupancic, Ziga</creatorcontrib><creatorcontrib>Unk, Mojca</creatorcontrib><creatorcontrib>Skalic, Katja</creatorcontrib><creatorcontrib>Zagar, Ivana</creatorcontrib><creatorcontrib>Studen, Andrej</creatorcontrib><creatorcontrib>Simoncic, Urban</creatorcontrib><creatorcontrib>Eickhoff, Jens</creatorcontrib><creatorcontrib>Jeraj, Robert</creatorcontrib><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><title>Radiology and oncology</title><description>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</description><subject>[18f]fdg pet/ct</subject><subject>anti-PD-1</subject><subject>Biomarkers</subject><subject>Computed tomography</subject><subject>F]FDG PET/CT</subject><subject>Fluorine isotopes</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunotherapy</subject><subject>iRADIOMICS</subject><subject>Lung cancer</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Monoclonal antibodies</subject><subject>Multivariate analysis</subject><subject>Non-small cell lung carcinoma</subject><subject>non-small-cell lung cancer</subject><subject>Patients</subject><subject>PD-L1 protein</subject><subject>Pembrolizumab</subject><subject>Positron emission tomography</subject><subject>Radiomics</subject><subject>radiomics analysis</subject><subject>Regression analysis</subject><subject>Small cell lung carcinoma</subject><subject>Survival</subject><subject>Targeted cancer therapy</subject><subject>Tumors</subject><issn>1581-3207</issn><issn>1318-2099</issn><issn>1581-3207</issn><issn>0485-893X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkFrFDEUxwdRbK1ePQe81MPUTJKZZECEsu3WhUpF60kkZJI3u1lmkmmSsaxfwq_sTLeoFU95JL_34-Xxz7KXBT4hjIs3QXmXE0xwjjEjj7LDohRFTgnmj_-qD7JnMW4xLitCxNPsgBJOKlLTw-zn10Isvy3PLtDH82tk-350Pm0gqGGHgjLW91ZHFO3aqTQGQMf20-nZ6urDavH5NRoCGKtTRAHi4F0E5FvkpoFir7ou19B1qBvdGmnlNAQ0qGTBTXwKoBIYdGvTBg3QN8F39sfYq-Z59qRVXYQX9-dR9mV5fr14n19eXawWp5e5LguWckOBGFpBrXlrMKG0wVRXDRBeYWCENaxVApOKVxpwTQgWFXBe1AKqioMp6FG22nuNV1s5BNursJNeWXl34cNaqpCs7kCaQnEDJeBGl0wUpBGKMq0FY60GRWFyvdu7hrHpwejpi0F1D6QPX5zdyLX_LjnDdYX5JDi-FwR_M0JMsrdx3p5y4McoCSM1LnnJygl99Q-69WNw06ruKEpFzeqJOtlTOvgYA7S_hymwnHMj59zIOTdyzs3U8HbfcKu6BMHAOoy7qfhj_39jySgRJf0FfQvKYA</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Valentinuzzi, Damijan</creator><creator>Vrankar, Martina</creator><creator>Boc, Nina</creator><creator>Ahac, Valentina</creator><creator>Zupancic, Ziga</creator><creator>Unk, Mojca</creator><creator>Skalic, Katja</creator><creator>Zagar, Ivana</creator><creator>Studen, Andrej</creator><creator>Simoncic, Urban</creator><creator>Eickhoff, Jens</creator><creator>Jeraj, Robert</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200729</creationdate><title>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</title><author>Valentinuzzi, Damijan ; Vrankar, Martina ; Boc, Nina ; Ahac, Valentina ; Zupancic, Ziga ; Unk, Mojca ; Skalic, Katja ; Zagar, Ivana ; Studen, Andrej ; Simoncic, Urban ; Eickhoff, Jens ; Jeraj, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>[18f]fdg pet/ct</topic><topic>anti-PD-1</topic><topic>Biomarkers</topic><topic>Computed tomography</topic><topic>F]FDG PET/CT</topic><topic>Fluorine isotopes</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunotherapy</topic><topic>iRADIOMICS</topic><topic>Lung cancer</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Monoclonal antibodies</topic><topic>Multivariate analysis</topic><topic>Non-small cell lung carcinoma</topic><topic>non-small-cell lung cancer</topic><topic>Patients</topic><topic>PD-L1 protein</topic><topic>Pembrolizumab</topic><topic>Positron emission tomography</topic><topic>Radiomics</topic><topic>radiomics analysis</topic><topic>Regression analysis</topic><topic>Small cell lung carcinoma</topic><topic>Survival</topic><topic>Targeted cancer therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentinuzzi, Damijan</creatorcontrib><creatorcontrib>Vrankar, Martina</creatorcontrib><creatorcontrib>Boc, Nina</creatorcontrib><creatorcontrib>Ahac, Valentina</creatorcontrib><creatorcontrib>Zupancic, Ziga</creatorcontrib><creatorcontrib>Unk, Mojca</creatorcontrib><creatorcontrib>Skalic, Katja</creatorcontrib><creatorcontrib>Zagar, Ivana</creatorcontrib><creatorcontrib>Studen, Andrej</creatorcontrib><creatorcontrib>Simoncic, Urban</creatorcontrib><creatorcontrib>Eickhoff, Jens</creatorcontrib><creatorcontrib>Jeraj, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Radiology and oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentinuzzi, Damijan</au><au>Vrankar, Martina</au><au>Boc, Nina</au><au>Ahac, Valentina</au><au>Zupancic, Ziga</au><au>Unk, Mojca</au><au>Skalic, Katja</au><au>Zagar, Ivana</au><au>Studen, Andrej</au><au>Simoncic, Urban</au><au>Eickhoff, Jens</au><au>Jeraj, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab</atitle><jtitle>Radiology and oncology</jtitle><date>2020-07-29</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>285</spage><epage>294</epage><pages>285-294</pages><issn>1581-3207</issn><issn>1318-2099</issn><eissn>1581-3207</eissn><eissn>0485-893X</eissn><abstract>Immune checkpoint inhibitors have changed the paradigm of cancer treatment; however, non-invasive biomarkers of response are still needed to identify candidates for non-responders. We aimed to investigate whether immunotherapy [18F]FDG PET radiomics signature (iRADIOMICS) predicts response of metastatic non-small-cell lung cancer (NSCLC) patients to pembrolizumab better than the current clinical standards.Patients and methods Thirty patients receiving pembrolizumab were scanned with [18F]FDG PET/CT at baseline, month 1 and 4. Associations of six robust primary tumour radiomics features with overall survival were analysed with Mann-Whitney U-test (MWU), Cox proportional hazards regression analysis, and ROC curve analysis. iRADIOMICS was constructed using univariate and multivariate logistic models of the most promising feature(s). Its predictive power was compared to PD-L1 tumour proportion score (TPS) and iRECIST using ROC curve analysis. Prediction accuracies were assessed with 5-fold cross validation.Results The most predictive were baseline radiomics features, e.g. Small Run Emphasis (MWU, p = 0.001; hazard ratio = 0.46, p = 0.007; AUC = 0.85 (95% CI 0.69–1.00)). Multivariate iRADIOMICS was found superior to the current standards in terms of predictive power and timewise with the following AUC (95% CI) and accuracy (standard deviation): iRADIOMICS (baseline), 0.90 (0.78–1.00), 78% (18%); PD-L1 TPS (baseline), 0.60 (0.37–0.83), 53% (18%); iRECIST (month 1), 0.79 (0.62–0.95), 76% (16%); iRECIST (month 4), 0.86 (0.72–1.00), 76% (17%).Conclusions Multivariate iRADIOMICS was identified as a promising imaging biomarker, which could improve management of metastatic NSCLC patients treated with pembrolizumab. The predicted non-responders could be offered other treatment options to improve their overall survival.</abstract><cop>Ljubljana</cop><pub>Sciendo</pub><pmid>32726293</pmid><doi>10.2478/raon-2020-0042</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1581-3207
ispartof Radiology and oncology, 2020-07, Vol.54 (3), p.285-294
issn 1581-3207
1318-2099
1581-3207
0485-893X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1a7de5e0bc54812b8a34cc844fcea3e
source Publicly Available Content (ProQuest); PubMed Central
subjects [18f]fdg pet/ct
anti-PD-1
Biomarkers
Computed tomography
F]FDG PET/CT
Fluorine isotopes
Immune checkpoint inhibitors
Immunotherapy
iRADIOMICS
Lung cancer
Metastases
Metastasis
Monoclonal antibodies
Multivariate analysis
Non-small cell lung carcinoma
non-small-cell lung cancer
Patients
PD-L1 protein
Pembrolizumab
Positron emission tomography
Radiomics
radiomics analysis
Regression analysis
Small cell lung carcinoma
Survival
Targeted cancer therapy
Tumors
title [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B18F%5DFDG%20PET%20immunotherapy%20radiomics%20signature%20(iRADIOMICS)%20predicts%20response%20of%20non-small-cell%20lung%20cancer%20patients%20treated%20with%20pembrolizumab&rft.jtitle=Radiology%20and%20oncology&rft.au=Valentinuzzi,%20Damijan&rft.date=2020-07-29&rft.volume=54&rft.issue=3&rft.spage=285&rft.epage=294&rft.pages=285-294&rft.issn=1581-3207&rft.eissn=1581-3207&rft_id=info:doi/10.2478/raon-2020-0042&rft_dat=%3Cproquest_doaj_%3E2429057545%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-d3e2d36e9c7fd0233b03c6be2760e424b4fa802676ce0922086e77198e667ed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429338949&rft_id=info:pmid/32726293&rfr_iscdi=true