Loading…

Comparison of Capture Hi-C Analytical Pipelines

It is now evident that DNA forms an organized nuclear architecture, which is essential to maintain the structural and functional integrity of the genome. Chromatin organization can be systematically studied due to the recent boom in chromosome conformation capture technologies (e.g., 3C and its succ...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics 2022-01, Vol.13, p.786501-786501
Main Authors: Aljogol, Dina, Thompson, I Richard, Osborne, Cameron S, Mifsud, Borbala
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673
cites cdi_FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673
container_end_page 786501
container_issue
container_start_page 786501
container_title Frontiers in genetics
container_volume 13
creator Aljogol, Dina
Thompson, I Richard
Osborne, Cameron S
Mifsud, Borbala
description It is now evident that DNA forms an organized nuclear architecture, which is essential to maintain the structural and functional integrity of the genome. Chromatin organization can be systematically studied due to the recent boom in chromosome conformation capture technologies (e.g., 3C and its successors 4C, 5C and Hi-C), which is accompanied by the development of computational pipelines to identify biologically meaningful chromatin contacts in such data. However, not all tools are applicable to all experimental designs and all structural features. Capture Hi-C (CHi-C) is a method that uses an intermediate hybridization step to target and select predefined regions of interest in a Hi-C library, thereby increasing effective sequencing depth for those regions. It allows researchers to investigate fine chromatin structures at high resolution, for instance promoter-enhancer loops, but it introduces additional biases with the capture step, and therefore requires specialized pipelines. Here, we compare multiple analytical pipelines for CHi-C data analysis. We consider the effect of retaining multi-mapping reads and compare the efficiency of different statistical approaches in both identifying reproducible interactions and determining biologically significant interactions. At restriction fragment level resolution, the number of multi-mapping reads that could be rescued was negligible. The number of identified interactions varied widely, depending on the analytical method, indicating large differences in type I and type II error rates. The optimal pipeline depends on the project-specific tolerance level of false positive and false negative chromatin contacts.
doi_str_mv 10.3389/fgene.2022.786501
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1ad71cf7669483b8d1d39704bb01462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1ad71cf7669483b8d1d39704bb01462</doaj_id><sourcerecordid>2632805796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673</originalsourceid><addsrcrecordid>eNpVkUtLAzEQgIMoVtQf4EX26GXbvB8XoSxqBUEPeg7ZbFJTtps12Qr-e1erpc1lkszMNwMfAFcITgmRauaXrnNTDDGeCskZREfgDHFOSwkxOt67T8Blzis4HqoIIfQUTAhDSo7vMzCr4ro3KeTYFdEXlemHTXLFIpRVMe9M-zUEa9riJfSuDZ3LF-DEmza7y794Dt7u716rRfn0_PBYzZ9KSzkbSk9RTYwTEtdECFYrJg2XEjXEM8i8tUIKDCXFFjVKUeKdsEIhBR3lynNBzsHjlttEs9J9CmuTvnQ0Qf9-xLTUJo27tU43yDQCWS84V1SSWjbjGCUgrWuIKMcj63bL6jf12jXWdUMy7QH0MNOFd72Mn1pKpiSiI-DmD5Dix8blQa9Dtq5tTefiJmvMCZaQCcXHUrQttSnmnJzfjUFQ_3jTv970jze99Tb2XO_vt-v4t0S-AbIZklU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632805796</pqid></control><display><type>article</type><title>Comparison of Capture Hi-C Analytical Pipelines</title><source>Open Access: PubMed Central</source><creator>Aljogol, Dina ; Thompson, I Richard ; Osborne, Cameron S ; Mifsud, Borbala</creator><creatorcontrib>Aljogol, Dina ; Thompson, I Richard ; Osborne, Cameron S ; Mifsud, Borbala</creatorcontrib><description>It is now evident that DNA forms an organized nuclear architecture, which is essential to maintain the structural and functional integrity of the genome. Chromatin organization can be systematically studied due to the recent boom in chromosome conformation capture technologies (e.g., 3C and its successors 4C, 5C and Hi-C), which is accompanied by the development of computational pipelines to identify biologically meaningful chromatin contacts in such data. However, not all tools are applicable to all experimental designs and all structural features. Capture Hi-C (CHi-C) is a method that uses an intermediate hybridization step to target and select predefined regions of interest in a Hi-C library, thereby increasing effective sequencing depth for those regions. It allows researchers to investigate fine chromatin structures at high resolution, for instance promoter-enhancer loops, but it introduces additional biases with the capture step, and therefore requires specialized pipelines. Here, we compare multiple analytical pipelines for CHi-C data analysis. We consider the effect of retaining multi-mapping reads and compare the efficiency of different statistical approaches in both identifying reproducible interactions and determining biologically significant interactions. At restriction fragment level resolution, the number of multi-mapping reads that could be rescued was negligible. The number of identified interactions varied widely, depending on the analytical method, indicating large differences in type I and type II error rates. The optimal pipeline depends on the project-specific tolerance level of false positive and false negative chromatin contacts.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2022.786501</identifier><identifier>PMID: 35198004</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>capture Hi-C ; chromatin organization ; computational pipeline ; epigenetics ; gene regulation ; Genetics</subject><ispartof>Frontiers in genetics, 2022-01, Vol.13, p.786501-786501</ispartof><rights>Copyright © 2022 Aljogol, Thompson, Osborne and Mifsud.</rights><rights>Copyright © 2022 Aljogol, Thompson, Osborne and Mifsud. 2022 Aljogol, Thompson, Osborne and Mifsud</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673</citedby><cites>FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859814/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859814/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35198004$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aljogol, Dina</creatorcontrib><creatorcontrib>Thompson, I Richard</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><title>Comparison of Capture Hi-C Analytical Pipelines</title><title>Frontiers in genetics</title><addtitle>Front Genet</addtitle><description>It is now evident that DNA forms an organized nuclear architecture, which is essential to maintain the structural and functional integrity of the genome. Chromatin organization can be systematically studied due to the recent boom in chromosome conformation capture technologies (e.g., 3C and its successors 4C, 5C and Hi-C), which is accompanied by the development of computational pipelines to identify biologically meaningful chromatin contacts in such data. However, not all tools are applicable to all experimental designs and all structural features. Capture Hi-C (CHi-C) is a method that uses an intermediate hybridization step to target and select predefined regions of interest in a Hi-C library, thereby increasing effective sequencing depth for those regions. It allows researchers to investigate fine chromatin structures at high resolution, for instance promoter-enhancer loops, but it introduces additional biases with the capture step, and therefore requires specialized pipelines. Here, we compare multiple analytical pipelines for CHi-C data analysis. We consider the effect of retaining multi-mapping reads and compare the efficiency of different statistical approaches in both identifying reproducible interactions and determining biologically significant interactions. At restriction fragment level resolution, the number of multi-mapping reads that could be rescued was negligible. The number of identified interactions varied widely, depending on the analytical method, indicating large differences in type I and type II error rates. The optimal pipeline depends on the project-specific tolerance level of false positive and false negative chromatin contacts.</description><subject>capture Hi-C</subject><subject>chromatin organization</subject><subject>computational pipeline</subject><subject>epigenetics</subject><subject>gene regulation</subject><subject>Genetics</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEQgIMoVtQf4EX26GXbvB8XoSxqBUEPeg7ZbFJTtps12Qr-e1erpc1lkszMNwMfAFcITgmRauaXrnNTDDGeCskZREfgDHFOSwkxOt67T8Blzis4HqoIIfQUTAhDSo7vMzCr4ro3KeTYFdEXlemHTXLFIpRVMe9M-zUEa9riJfSuDZ3LF-DEmza7y794Dt7u716rRfn0_PBYzZ9KSzkbSk9RTYwTEtdECFYrJg2XEjXEM8i8tUIKDCXFFjVKUeKdsEIhBR3lynNBzsHjlttEs9J9CmuTvnQ0Qf9-xLTUJo27tU43yDQCWS84V1SSWjbjGCUgrWuIKMcj63bL6jf12jXWdUMy7QH0MNOFd72Mn1pKpiSiI-DmD5Dix8blQa9Dtq5tTefiJmvMCZaQCcXHUrQttSnmnJzfjUFQ_3jTv970jze99Tb2XO_vt-v4t0S-AbIZklU</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Aljogol, Dina</creator><creator>Thompson, I Richard</creator><creator>Osborne, Cameron S</creator><creator>Mifsud, Borbala</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220128</creationdate><title>Comparison of Capture Hi-C Analytical Pipelines</title><author>Aljogol, Dina ; Thompson, I Richard ; Osborne, Cameron S ; Mifsud, Borbala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>capture Hi-C</topic><topic>chromatin organization</topic><topic>computational pipeline</topic><topic>epigenetics</topic><topic>gene regulation</topic><topic>Genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljogol, Dina</creatorcontrib><creatorcontrib>Thompson, I Richard</creatorcontrib><creatorcontrib>Osborne, Cameron S</creatorcontrib><creatorcontrib>Mifsud, Borbala</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljogol, Dina</au><au>Thompson, I Richard</au><au>Osborne, Cameron S</au><au>Mifsud, Borbala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Capture Hi-C Analytical Pipelines</atitle><jtitle>Frontiers in genetics</jtitle><addtitle>Front Genet</addtitle><date>2022-01-28</date><risdate>2022</risdate><volume>13</volume><spage>786501</spage><epage>786501</epage><pages>786501-786501</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>It is now evident that DNA forms an organized nuclear architecture, which is essential to maintain the structural and functional integrity of the genome. Chromatin organization can be systematically studied due to the recent boom in chromosome conformation capture technologies (e.g., 3C and its successors 4C, 5C and Hi-C), which is accompanied by the development of computational pipelines to identify biologically meaningful chromatin contacts in such data. However, not all tools are applicable to all experimental designs and all structural features. Capture Hi-C (CHi-C) is a method that uses an intermediate hybridization step to target and select predefined regions of interest in a Hi-C library, thereby increasing effective sequencing depth for those regions. It allows researchers to investigate fine chromatin structures at high resolution, for instance promoter-enhancer loops, but it introduces additional biases with the capture step, and therefore requires specialized pipelines. Here, we compare multiple analytical pipelines for CHi-C data analysis. We consider the effect of retaining multi-mapping reads and compare the efficiency of different statistical approaches in both identifying reproducible interactions and determining biologically significant interactions. At restriction fragment level resolution, the number of multi-mapping reads that could be rescued was negligible. The number of identified interactions varied widely, depending on the analytical method, indicating large differences in type I and type II error rates. The optimal pipeline depends on the project-specific tolerance level of false positive and false negative chromatin contacts.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>35198004</pmid><doi>10.3389/fgene.2022.786501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-8021
ispartof Frontiers in genetics, 2022-01, Vol.13, p.786501-786501
issn 1664-8021
1664-8021
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1ad71cf7669483b8d1d39704bb01462
source Open Access: PubMed Central
subjects capture Hi-C
chromatin organization
computational pipeline
epigenetics
gene regulation
Genetics
title Comparison of Capture Hi-C Analytical Pipelines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Capture%20Hi-C%20Analytical%20Pipelines&rft.jtitle=Frontiers%20in%20genetics&rft.au=Aljogol,%20Dina&rft.date=2022-01-28&rft.volume=13&rft.spage=786501&rft.epage=786501&rft.pages=786501-786501&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2022.786501&rft_dat=%3Cproquest_doaj_%3E2632805796%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-f41b3ae782b3775b958a6881d3f505fcc78720842c1d9943fe7c79190e469f673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632805796&rft_id=info:pmid/35198004&rfr_iscdi=true