Loading…

Positive surface charge of GluN1 N-terminus mediates the direct interaction with EphB2 and NMDAR mobility

Localization of the N-methyl-D-aspartate type glutamate receptor (NMDAR) to dendritic spines is essential for excitatory synaptic transmission and plasticity. Rather than remaining trapped at synaptic sites, NMDA receptors undergo constant cycling into and out of the postsynaptic density. Receptor m...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-01, Vol.11 (1), p.570-16, Article 570
Main Authors: Washburn, Halley R., Xia, Nan L., Zhou, Wei, Mao, Yu-Ting, Dalva, Matthew B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Localization of the N-methyl-D-aspartate type glutamate receptor (NMDAR) to dendritic spines is essential for excitatory synaptic transmission and plasticity. Rather than remaining trapped at synaptic sites, NMDA receptors undergo constant cycling into and out of the postsynaptic density. Receptor movement is constrained by protein-protein interactions with both the intracellular and extracellular domains of the NMDAR. The role of extracellular interactions on the mobility of the NMDAR is poorly understood. Here we demonstrate that the positive surface charge of the hinge region of the N-terminal domain in the GluN1 subunit of the NMDAR is required to maintain NMDARs at dendritic spine synapses and mediates the direct extracellular interaction with a negatively charged phospho-tyrosine on the receptor tyrosine kinase EphB2. Loss of the EphB-NMDAR interaction by either mutating GluN1 or knocking down endogenous EphB2 increases NMDAR mobility. These findings begin to define a mechanism for extracellular interactions mediated by charged domains. NMDA receptors undergo constant cycling into and out of the postsynaptic density. Here authors show that NMDAR's GluN1 subunit is required to maintain NMDARs at dendritic spine synapses by direct extracellular interaction with the receptor tyrosine kinase EphB2.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14345-6