Loading…
GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma
BackgroundA better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) ce...
Saved in:
Published in: | Journal for immunotherapy of cancer 2021-09, Vol.9 (9), p.e002787 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903 |
---|---|
cites | cdi_FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903 |
container_end_page | |
container_issue | 9 |
container_start_page | e002787 |
container_title | Journal for immunotherapy of cancer |
container_volume | 9 |
creator | Wang, Zhaowei He, Lei Li, Weina Xu, Chuanyang Zhang, Jieyu Wang, Desheng Dou, Kefeng Zhuang, Ran Jin, Boquan Zhang, Wei Hao, Qiang Zhang, Kuo Zhang, Wangqian Wang, Shuning Gao, Yuan Gu, Jintao Shang, Lei Tan, Zhijun Su, Haichuan Zhang, Yingqi Zhang, Cun Li, Meng |
description | BackgroundA better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies.MethodsWe used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15–/–, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression.ResultsGDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse.ConclusionsOur results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events. |
doi_str_mv | 10.1136/jitc-2021-002787 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1b9165920ba4fccb35243b894017e8f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1b9165920ba4fccb35243b894017e8f</doaj_id><sourcerecordid>2570110541</sourcerecordid><originalsourceid>FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903</originalsourceid><addsrcrecordid>eNqNks1rFjEQxhdRbKm9e5IFL4Ku5nOTXAR5a2uh4KVevIR8vs2yu1mT3UL_e7NufW0FwVMmM795mEyeqnoJwXsIcfuhC7NpEECwAQAxzp5UxwhQ2ECC2qcP4qPqNOcOAAABxpzz59URJoQLjMlx9f3i7BzSOox2MS7XYRiWMeZlmpLLOcSxvg2q3p0RXpc4uf3Sqzmmu_q6Nq7vS8NY37ip5NZrKabaqGTCGAf1onrmVZ_d6f15Un07_3y9-9Jcfb243H26ajRt8dwYBTRyhjFOMfK69QK13lLmOfHeEsUQpxRY7VuGYWs1pJ5ZZpjVmnggAD6pLjddG1UnpxQGle5kVEH-SsS0lyrNwfROWqgFbKlAQCvijdGYIoI1FwRA5rgvWh83rWnRg7PGjXNS_SPRx5Ux3Mh9vJWcIEQ4LgJv7gVS_LG4PMsh5HU3anRxyRJRBiAElMCCvv4L7eKSxrKqQgncEgEFKRTYKJNizsn5wzAQyNUHcvWBXH0gNx-UllcPH3Fo-P3rBXi7AXro_kfu3R_6MOI_8Z90KMmn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593649194</pqid></control><display><type>article</type><title>GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma</title><source>Publicly Available Content (ProQuest)</source><source>PubMed</source><source>British Medical Journal Open Access Journals</source><creator>Wang, Zhaowei ; He, Lei ; Li, Weina ; Xu, Chuanyang ; Zhang, Jieyu ; Wang, Desheng ; Dou, Kefeng ; Zhuang, Ran ; Jin, Boquan ; Zhang, Wei ; Hao, Qiang ; Zhang, Kuo ; Zhang, Wangqian ; Wang, Shuning ; Gao, Yuan ; Gu, Jintao ; Shang, Lei ; Tan, Zhijun ; Su, Haichuan ; Zhang, Yingqi ; Zhang, Cun ; Li, Meng</creator><creatorcontrib>Wang, Zhaowei ; He, Lei ; Li, Weina ; Xu, Chuanyang ; Zhang, Jieyu ; Wang, Desheng ; Dou, Kefeng ; Zhuang, Ran ; Jin, Boquan ; Zhang, Wei ; Hao, Qiang ; Zhang, Kuo ; Zhang, Wangqian ; Wang, Shuning ; Gao, Yuan ; Gu, Jintao ; Shang, Lei ; Tan, Zhijun ; Su, Haichuan ; Zhang, Yingqi ; Zhang, Cun ; Li, Meng</creatorcontrib><description>BackgroundA better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies.MethodsWe used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15–/–, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression.ResultsGDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse.ConclusionsOur results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.</description><identifier>ISSN: 2051-1426</identifier><identifier>EISSN: 2051-1426</identifier><identifier>DOI: 10.1136/jitc-2021-002787</identifier><identifier>PMID: 34489334</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd</publisher><subject>Animals ; Basic Tumor Immunology ; biomarkers ; Cancer ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - immunology ; Carcinoma, Hepatocellular - pathology ; CD48 Antigen - immunology ; Clustering ; Genomes ; Growth Differentiation Factor 15 - immunology ; Humans ; Immune Tolerance ; Immunotherapy ; Liver cancer ; Liver Neoplasms - genetics ; Liver Neoplasms - immunology ; Liver Neoplasms - pathology ; Lymphatic system ; Lymphocytes ; Male ; Mice ; Physiology ; T-Lymphocytes, Regulatory - immunology ; tumor ; tumor escape ; tumor microenvironment ; Tumor Microenvironment - immunology ; Tumors</subject><ispartof>Journal for immunotherapy of cancer, 2021-09, Vol.9 (9), p.e002787</ispartof><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903</citedby><cites>FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903</cites><orcidid>0000-0002-8000-3003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2593649194/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2593649194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27528,27529,27903,27904,36991,36992,44569,53770,53772,55329,74873,77348,77379,77407,77433</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34489334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhaowei</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Li, Weina</creatorcontrib><creatorcontrib>Xu, Chuanyang</creatorcontrib><creatorcontrib>Zhang, Jieyu</creatorcontrib><creatorcontrib>Wang, Desheng</creatorcontrib><creatorcontrib>Dou, Kefeng</creatorcontrib><creatorcontrib>Zhuang, Ran</creatorcontrib><creatorcontrib>Jin, Boquan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Hao, Qiang</creatorcontrib><creatorcontrib>Zhang, Kuo</creatorcontrib><creatorcontrib>Zhang, Wangqian</creatorcontrib><creatorcontrib>Wang, Shuning</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Gu, Jintao</creatorcontrib><creatorcontrib>Shang, Lei</creatorcontrib><creatorcontrib>Tan, Zhijun</creatorcontrib><creatorcontrib>Su, Haichuan</creatorcontrib><creatorcontrib>Zhang, Yingqi</creatorcontrib><creatorcontrib>Zhang, Cun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><title>GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma</title><title>Journal for immunotherapy of cancer</title><addtitle>J Immunother Cancer</addtitle><addtitle>J Immunother Cancer</addtitle><description>BackgroundA better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies.MethodsWe used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15–/–, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression.ResultsGDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse.ConclusionsOur results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.</description><subject>Animals</subject><subject>Basic Tumor Immunology</subject><subject>biomarkers</subject><subject>Cancer</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - immunology</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>CD48 Antigen - immunology</subject><subject>Clustering</subject><subject>Genomes</subject><subject>Growth Differentiation Factor 15 - immunology</subject><subject>Humans</subject><subject>Immune Tolerance</subject><subject>Immunotherapy</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - genetics</subject><subject>Liver Neoplasms - immunology</subject><subject>Liver Neoplasms - pathology</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Male</subject><subject>Mice</subject><subject>Physiology</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>tumor</subject><subject>tumor escape</subject><subject>tumor microenvironment</subject><subject>Tumor Microenvironment - immunology</subject><subject>Tumors</subject><issn>2051-1426</issn><issn>2051-1426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFjEQxhdRbKm9e5IFL4Ku5nOTXAR5a2uh4KVevIR8vs2yu1mT3UL_e7NufW0FwVMmM795mEyeqnoJwXsIcfuhC7NpEECwAQAxzp5UxwhQ2ECC2qcP4qPqNOcOAAABxpzz59URJoQLjMlx9f3i7BzSOox2MS7XYRiWMeZlmpLLOcSxvg2q3p0RXpc4uf3Sqzmmu_q6Nq7vS8NY37ip5NZrKabaqGTCGAf1onrmVZ_d6f15Un07_3y9-9Jcfb243H26ajRt8dwYBTRyhjFOMfK69QK13lLmOfHeEsUQpxRY7VuGYWs1pJ5ZZpjVmnggAD6pLjddG1UnpxQGle5kVEH-SsS0lyrNwfROWqgFbKlAQCvijdGYIoI1FwRA5rgvWh83rWnRg7PGjXNS_SPRx5Ux3Mh9vJWcIEQ4LgJv7gVS_LG4PMsh5HU3anRxyRJRBiAElMCCvv4L7eKSxrKqQgncEgEFKRTYKJNizsn5wzAQyNUHcvWBXH0gNx-UllcPH3Fo-P3rBXi7AXro_kfu3R_6MOI_8Z90KMmn</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wang, Zhaowei</creator><creator>He, Lei</creator><creator>Li, Weina</creator><creator>Xu, Chuanyang</creator><creator>Zhang, Jieyu</creator><creator>Wang, Desheng</creator><creator>Dou, Kefeng</creator><creator>Zhuang, Ran</creator><creator>Jin, Boquan</creator><creator>Zhang, Wei</creator><creator>Hao, Qiang</creator><creator>Zhang, Kuo</creator><creator>Zhang, Wangqian</creator><creator>Wang, Shuning</creator><creator>Gao, Yuan</creator><creator>Gu, Jintao</creator><creator>Shang, Lei</creator><creator>Tan, Zhijun</creator><creator>Su, Haichuan</creator><creator>Zhang, Yingqi</creator><creator>Zhang, Cun</creator><creator>Li, Meng</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8000-3003</orcidid></search><sort><creationdate>20210901</creationdate><title>GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma</title><author>Wang, Zhaowei ; He, Lei ; Li, Weina ; Xu, Chuanyang ; Zhang, Jieyu ; Wang, Desheng ; Dou, Kefeng ; Zhuang, Ran ; Jin, Boquan ; Zhang, Wei ; Hao, Qiang ; Zhang, Kuo ; Zhang, Wangqian ; Wang, Shuning ; Gao, Yuan ; Gu, Jintao ; Shang, Lei ; Tan, Zhijun ; Su, Haichuan ; Zhang, Yingqi ; Zhang, Cun ; Li, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Basic Tumor Immunology</topic><topic>biomarkers</topic><topic>Cancer</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - immunology</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>CD48 Antigen - immunology</topic><topic>Clustering</topic><topic>Genomes</topic><topic>Growth Differentiation Factor 15 - immunology</topic><topic>Humans</topic><topic>Immune Tolerance</topic><topic>Immunotherapy</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - genetics</topic><topic>Liver Neoplasms - immunology</topic><topic>Liver Neoplasms - pathology</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Male</topic><topic>Mice</topic><topic>Physiology</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>tumor</topic><topic>tumor escape</topic><topic>tumor microenvironment</topic><topic>Tumor Microenvironment - immunology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaowei</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Li, Weina</creatorcontrib><creatorcontrib>Xu, Chuanyang</creatorcontrib><creatorcontrib>Zhang, Jieyu</creatorcontrib><creatorcontrib>Wang, Desheng</creatorcontrib><creatorcontrib>Dou, Kefeng</creatorcontrib><creatorcontrib>Zhuang, Ran</creatorcontrib><creatorcontrib>Jin, Boquan</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Hao, Qiang</creatorcontrib><creatorcontrib>Zhang, Kuo</creatorcontrib><creatorcontrib>Zhang, Wangqian</creatorcontrib><creatorcontrib>Wang, Shuning</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Gu, Jintao</creatorcontrib><creatorcontrib>Shang, Lei</creatorcontrib><creatorcontrib>Tan, Zhijun</creatorcontrib><creatorcontrib>Su, Haichuan</creatorcontrib><creatorcontrib>Zhang, Yingqi</creatorcontrib><creatorcontrib>Zhang, Cun</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><collection>British Medical Journal Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal for immunotherapy of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaowei</au><au>He, Lei</au><au>Li, Weina</au><au>Xu, Chuanyang</au><au>Zhang, Jieyu</au><au>Wang, Desheng</au><au>Dou, Kefeng</au><au>Zhuang, Ran</au><au>Jin, Boquan</au><au>Zhang, Wei</au><au>Hao, Qiang</au><au>Zhang, Kuo</au><au>Zhang, Wangqian</au><au>Wang, Shuning</au><au>Gao, Yuan</au><au>Gu, Jintao</au><au>Shang, Lei</au><au>Tan, Zhijun</au><au>Su, Haichuan</au><au>Zhang, Yingqi</au><au>Zhang, Cun</au><au>Li, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma</atitle><jtitle>Journal for immunotherapy of cancer</jtitle><stitle>J Immunother Cancer</stitle><addtitle>J Immunother Cancer</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><spage>e002787</spage><pages>e002787-</pages><issn>2051-1426</issn><eissn>2051-1426</eissn><abstract>BackgroundA better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies.MethodsWe used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15–/–, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression.ResultsGDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse.ConclusionsOur results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd</pub><pmid>34489334</pmid><doi>10.1136/jitc-2021-002787</doi><orcidid>https://orcid.org/0000-0002-8000-3003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-1426 |
ispartof | Journal for immunotherapy of cancer, 2021-09, Vol.9 (9), p.e002787 |
issn | 2051-1426 2051-1426 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d1b9165920ba4fccb35243b894017e8f |
source | Publicly Available Content (ProQuest); PubMed; British Medical Journal Open Access Journals |
subjects | Animals Basic Tumor Immunology biomarkers Cancer Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - immunology Carcinoma, Hepatocellular - pathology CD48 Antigen - immunology Clustering Genomes Growth Differentiation Factor 15 - immunology Humans Immune Tolerance Immunotherapy Liver cancer Liver Neoplasms - genetics Liver Neoplasms - immunology Liver Neoplasms - pathology Lymphatic system Lymphocytes Male Mice Physiology T-Lymphocytes, Regulatory - immunology tumor tumor escape tumor microenvironment Tumor Microenvironment - immunology Tumors |
title | GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GDF15%20induces%20immunosuppression%20via%20CD48%20on%20regulatory%20T%20cells%20in%20hepatocellular%20carcinoma&rft.jtitle=Journal%20for%20immunotherapy%20of%20cancer&rft.au=Wang,%20Zhaowei&rft.date=2021-09-01&rft.volume=9&rft.issue=9&rft.spage=e002787&rft.pages=e002787-&rft.issn=2051-1426&rft.eissn=2051-1426&rft_id=info:doi/10.1136/jitc-2021-002787&rft_dat=%3Cproquest_doaj_%3E2570110541%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b563t-ca0b2ec778532fb6f926fd57f84ffd4a728550dbf67316db15f7d7c7dbb4f0903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593649194&rft_id=info:pmid/34489334&rfr_iscdi=true |