Loading…
Mutations in rpoB and katG genes and the inhA operon in multidrug-resistant Mycobacterium tuberculosis isolates from Zambia
•Genetic mechanism of resistance of Mycobacterium tuberculosis to RIF and INH in Zambia was previously unreported.•96.0% (95/99) of MDR-TB isolates in Zambia carried mutations in both rpoB and katG genes.•No mutations were detected among pan-susceptible isolates.•Extraordinary high katG mutation rat...
Saved in:
Published in: | Journal of global antimicrobial resistance. 2020-09, Vol.22, p.302-307 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Genetic mechanism of resistance of Mycobacterium tuberculosis to RIF and INH in Zambia was previously unreported.•96.0% (95/99) of MDR-TB isolates in Zambia carried mutations in both rpoB and katG genes.•No mutations were detected among pan-susceptible isolates.•Extraordinary high katG mutation rate among M. tuberculosis isolates in Zambia compared with other regional countries.•Difference in katG mutation rate may separate cross-boundary transmission of MDR-TB from other African nations.
It is established that resistance to rifampicin (RIF) in 90% of RIF-resistant Mycobacterium tuberculosis isolates is attributable to point mutations in the rpoB gene, whilst 50–95% of M. tuberculosis resistance to isoniazid (INH) is caused by mutations in the katG gene. However, the patterns and frequencies of mutations vary by geographical region. In Zambia, the genetic mechanisms of resistance of M. tuberculosis to RIF and INH were unreported before this study.
Using gene sequencing, the rpoB, katG and inhA genes of 99 multidrug-resistant M. tuberculosis (MDR-TB) and 49 pan-susceptible M. tuberculosis isolates stored at a tuberculosis reference laboratory from 2013 to 2016 were analysed and were compared with published profiles from other African countries.
Of the 99 MDR-TB isolates, 95 (96.0%) carried mutations in both rpoB and katG. No mutations were detected among the pan-susceptible isolates. The most common mutations among RIF- and INH-resistant isolates were in codon 531 of the rpoB gene (55.6%; 55/99) and codon 315 of the katG gene (94.9%; 94/99), respectively. Distinctly, katG mutations were predominantly high among Zambian isolates (96.0%) compared with other countries in the region.
Resistance-associated mutations to RIF and INH circulating in Zambia are similar to those reported globally, therefore these data validate the applicability of molecular diagnostic tools in Zambia. However, katG mutations were predominantly high among M. tuberculosis isolates in this study compared with other regional countries and might distinguish cross-boundary transmission of MDR-TB from other African nations. |
---|---|
ISSN: | 2213-7165 2213-7173 |
DOI: | 10.1016/j.jgar.2020.02.026 |