Loading…

Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension

Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and...

Full description

Saved in:
Bibliographic Details
Published in:Pulmonary circulation 2022-07, Vol.12 (3), p.e12125-n/a
Main Authors: Dual, Seraina A., Verdonk, Constance, Amsallem, Myriam, Pham, Jonathan, Obasohan, Courtney, Nataf, Patrick, McElhinney, Doff B., Arunamata, Alisa, Kuznetsova, Tatiana, Zamanian, Roham, Feinstein, Jeffrey A., Marsden, Alison, Haddad, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5115-adf08810572bbde2d89bd4650033bbd3775db5ec6d8214e4858d5cc6243832e93
container_end_page n/a
container_issue 3
container_start_page e12125
container_title Pulmonary circulation
container_volume 12
creator Dual, Seraina A.
Verdonk, Constance
Amsallem, Myriam
Pham, Jonathan
Obasohan, Courtney
Nataf, Patrick
McElhinney, Doff B.
Arunamata, Alisa
Kuznetsova, Tatiana
Zamanian, Roham
Feinstein, Jeffrey A.
Marsden, Alison
Haddad, François
description Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non‐PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology‐driven phases: the isovolumic phase, ejection phase, and “shoulder” point phase. Coefficients of determination and a Bland−Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R2 > 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], −2.94 [1.47; 4.41], and −3.11 [−4.52; −1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.
doi_str_mv 10.1002/pul2.12125
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d1e83aea3b1349b590f745a65028fe38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1e83aea3b1349b590f745a65028fe38</doaj_id><sourcerecordid>3057719531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5115-adf08810572bbde2d89bd4650033bbd3775db5ec6d8214e4858d5cc6243832e93</originalsourceid><addsrcrecordid>eNp9kk9v0zAYhyMEYlPZhQ-AInFBSBn-m9gXpGkbMKkSHBhXy7HftO7cONjJpn573GZMKwd8sfX68eOf7Lco3mJ0jhEin4bJk3NMMOEvilOCGK-EZOjls_VJcZbSBuXBJCZIvC5OaI1wXdfytLi79pNxVo-uX5VjdGZKg7PlVRgGD7FMbtVrX7p-hDgEn7HQl7q3pRtT6baDd2audSGWOiVIaS_Kobah13FXrncDxBH6lKE3xatO-wRnj_OiuP1y_fPyW7X8_vXm8mJZGY4xr7TtkBAY8Ya0rQVihWwtqzlClOYCbRpuWw6mtoJgBkxwYbkxNWFUUAKSLoqb2WuD3qghum1OooJ26lAIcaV0HJ3xoCwGQTVo2mLKZMsl6hrGdb6MiA6yb1FUsys9wDC1R7Yr9-viYLsb14oSgSXJ_OeZz_AWrIF-jNofHTve6d1arcK9klTyWrIs-PAoiOH3BGlUW5cMeK97CFNSpEFNjRglNKPv_0E3YYr5v5Ki-fUaLDnFmfo4UyaGlCJ0T2EwUvsWUvsWUocWyvC75_Gf0L8NkwE8Aw_Ow-4_KvXjdklm6R99RtLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057719531</pqid></control><display><type>article</type><title>Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Dual, Seraina A. ; Verdonk, Constance ; Amsallem, Myriam ; Pham, Jonathan ; Obasohan, Courtney ; Nataf, Patrick ; McElhinney, Doff B. ; Arunamata, Alisa ; Kuznetsova, Tatiana ; Zamanian, Roham ; Feinstein, Jeffrey A. ; Marsden, Alison ; Haddad, François</creator><creatorcontrib>Dual, Seraina A. ; Verdonk, Constance ; Amsallem, Myriam ; Pham, Jonathan ; Obasohan, Courtney ; Nataf, Patrick ; McElhinney, Doff B. ; Arunamata, Alisa ; Kuznetsova, Tatiana ; Zamanian, Roham ; Feinstein, Jeffrey A. ; Marsden, Alison ; Haddad, François</creatorcontrib><description>Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non‐PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology‐driven phases: the isovolumic phase, ejection phase, and “shoulder” point phase. Coefficients of determination and a Bland−Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R2 &gt; 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], −2.94 [1.47; 4.41], and −3.11 [−4.52; −1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.</description><identifier>ISSN: 2045-8940</identifier><identifier>ISSN: 2045-8932</identifier><identifier>EISSN: 2045-8940</identifier><identifier>DOI: 10.1002/pul2.12125</identifier><identifier>PMID: 36016669</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Digitization ; Doppler ; echocardiography ; hemodynamics ; Interpolation ; Medical Technology ; Medicinsk teknologi ; Pulmonary hypertension ; right heart catheterization ; tricuspid regurgitation ; ultrasound</subject><ispartof>Pulmonary circulation, 2022-07, Vol.12 (3), p.e12125-n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Pulmonary Vascular Research Institute.</rights><rights>2022 The Authors. Pulmonary Circulation published by John Wiley &amp; Sons Ltd on behalf of Pulmonary Vascular Research Institute.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5115-adf08810572bbde2d89bd4650033bbd3775db5ec6d8214e4858d5cc6243832e93</cites><orcidid>0000-0002-5676-6561 ; 0000-0001-6867-8270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395694/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3057719531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11561,25752,27923,27924,37011,37012,44589,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36016669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-328192$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dual, Seraina A.</creatorcontrib><creatorcontrib>Verdonk, Constance</creatorcontrib><creatorcontrib>Amsallem, Myriam</creatorcontrib><creatorcontrib>Pham, Jonathan</creatorcontrib><creatorcontrib>Obasohan, Courtney</creatorcontrib><creatorcontrib>Nataf, Patrick</creatorcontrib><creatorcontrib>McElhinney, Doff B.</creatorcontrib><creatorcontrib>Arunamata, Alisa</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Zamanian, Roham</creatorcontrib><creatorcontrib>Feinstein, Jeffrey A.</creatorcontrib><creatorcontrib>Marsden, Alison</creatorcontrib><creatorcontrib>Haddad, François</creatorcontrib><title>Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension</title><title>Pulmonary circulation</title><addtitle>Pulm Circ</addtitle><description>Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non‐PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology‐driven phases: the isovolumic phase, ejection phase, and “shoulder” point phase. Coefficients of determination and a Bland−Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R2 &gt; 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], −2.94 [1.47; 4.41], and −3.11 [−4.52; −1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.</description><subject>Digitization</subject><subject>Doppler</subject><subject>echocardiography</subject><subject>hemodynamics</subject><subject>Interpolation</subject><subject>Medical Technology</subject><subject>Medicinsk teknologi</subject><subject>Pulmonary hypertension</subject><subject>right heart catheterization</subject><subject>tricuspid regurgitation</subject><subject>ultrasound</subject><issn>2045-8940</issn><issn>2045-8932</issn><issn>2045-8940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v0zAYhyMEYlPZhQ-AInFBSBn-m9gXpGkbMKkSHBhXy7HftO7cONjJpn573GZMKwd8sfX68eOf7Lco3mJ0jhEin4bJk3NMMOEvilOCGK-EZOjls_VJcZbSBuXBJCZIvC5OaI1wXdfytLi79pNxVo-uX5VjdGZKg7PlVRgGD7FMbtVrX7p-hDgEn7HQl7q3pRtT6baDd2audSGWOiVIaS_Kobah13FXrncDxBH6lKE3xatO-wRnj_OiuP1y_fPyW7X8_vXm8mJZGY4xr7TtkBAY8Ya0rQVihWwtqzlClOYCbRpuWw6mtoJgBkxwYbkxNWFUUAKSLoqb2WuD3qghum1OooJ26lAIcaV0HJ3xoCwGQTVo2mLKZMsl6hrGdb6MiA6yb1FUsys9wDC1R7Yr9-viYLsb14oSgSXJ_OeZz_AWrIF-jNofHTve6d1arcK9klTyWrIs-PAoiOH3BGlUW5cMeK97CFNSpEFNjRglNKPv_0E3YYr5v5Ki-fUaLDnFmfo4UyaGlCJ0T2EwUvsWUvsWUocWyvC75_Gf0L8NkwE8Aw_Ow-4_KvXjdklm6R99RtLQ</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Dual, Seraina A.</creator><creator>Verdonk, Constance</creator><creator>Amsallem, Myriam</creator><creator>Pham, Jonathan</creator><creator>Obasohan, Courtney</creator><creator>Nataf, Patrick</creator><creator>McElhinney, Doff B.</creator><creator>Arunamata, Alisa</creator><creator>Kuznetsova, Tatiana</creator><creator>Zamanian, Roham</creator><creator>Feinstein, Jeffrey A.</creator><creator>Marsden, Alison</creator><creator>Haddad, François</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5676-6561</orcidid><orcidid>https://orcid.org/0000-0001-6867-8270</orcidid></search><sort><creationdate>202207</creationdate><title>Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension</title><author>Dual, Seraina A. ; Verdonk, Constance ; Amsallem, Myriam ; Pham, Jonathan ; Obasohan, Courtney ; Nataf, Patrick ; McElhinney, Doff B. ; Arunamata, Alisa ; Kuznetsova, Tatiana ; Zamanian, Roham ; Feinstein, Jeffrey A. ; Marsden, Alison ; Haddad, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5115-adf08810572bbde2d89bd4650033bbd3775db5ec6d8214e4858d5cc6243832e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Digitization</topic><topic>Doppler</topic><topic>echocardiography</topic><topic>hemodynamics</topic><topic>Interpolation</topic><topic>Medical Technology</topic><topic>Medicinsk teknologi</topic><topic>Pulmonary hypertension</topic><topic>right heart catheterization</topic><topic>tricuspid regurgitation</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dual, Seraina A.</creatorcontrib><creatorcontrib>Verdonk, Constance</creatorcontrib><creatorcontrib>Amsallem, Myriam</creatorcontrib><creatorcontrib>Pham, Jonathan</creatorcontrib><creatorcontrib>Obasohan, Courtney</creatorcontrib><creatorcontrib>Nataf, Patrick</creatorcontrib><creatorcontrib>McElhinney, Doff B.</creatorcontrib><creatorcontrib>Arunamata, Alisa</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Zamanian, Roham</creatorcontrib><creatorcontrib>Feinstein, Jeffrey A.</creatorcontrib><creatorcontrib>Marsden, Alison</creatorcontrib><creatorcontrib>Haddad, François</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Pulmonary circulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dual, Seraina A.</au><au>Verdonk, Constance</au><au>Amsallem, Myriam</au><au>Pham, Jonathan</au><au>Obasohan, Courtney</au><au>Nataf, Patrick</au><au>McElhinney, Doff B.</au><au>Arunamata, Alisa</au><au>Kuznetsova, Tatiana</au><au>Zamanian, Roham</au><au>Feinstein, Jeffrey A.</au><au>Marsden, Alison</au><au>Haddad, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension</atitle><jtitle>Pulmonary circulation</jtitle><addtitle>Pulm Circ</addtitle><date>2022-07</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>e12125</spage><epage>n/a</epage><pages>e12125-n/a</pages><issn>2045-8940</issn><issn>2045-8932</issn><eissn>2045-8940</eissn><abstract>Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non‐PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology‐driven phases: the isovolumic phase, ejection phase, and “shoulder” point phase. Coefficients of determination and a Bland−Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R2 &gt; 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], −2.94 [1.47; 4.41], and −3.11 [−4.52; −1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36016669</pmid><doi>10.1002/pul2.12125</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5676-6561</orcidid><orcidid>https://orcid.org/0000-0001-6867-8270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-8940
ispartof Pulmonary circulation, 2022-07, Vol.12 (3), p.e12125-n/a
issn 2045-8940
2045-8932
2045-8940
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d1e83aea3b1349b590f745a65028fe38
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Digitization
Doppler
echocardiography
hemodynamics
Interpolation
Medical Technology
Medicinsk teknologi
Pulmonary hypertension
right heart catheterization
tricuspid regurgitation
ultrasound
title Elucidating tricuspid Doppler signal interpolation and its implication for assessing pulmonary hypertension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20tricuspid%20Doppler%20signal%20interpolation%20and%20its%20implication%20for%20assessing%20pulmonary%20hypertension&rft.jtitle=Pulmonary%20circulation&rft.au=Dual,%20Seraina%20A.&rft.date=2022-07&rft.volume=12&rft.issue=3&rft.spage=e12125&rft.epage=n/a&rft.pages=e12125-n/a&rft.issn=2045-8940&rft.eissn=2045-8940&rft_id=info:doi/10.1002/pul2.12125&rft_dat=%3Cproquest_doaj_%3E3057719531%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5115-adf08810572bbde2d89bd4650033bbd3775db5ec6d8214e4858d5cc6243832e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3057719531&rft_id=info:pmid/36016669&rfr_iscdi=true