Loading…
Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models
In this study, we introduce a new synthetic data generation procedure for augmentation of histopathology image data. This is an extension to our previous research in which we proved the possibility to apply deep learning models for morphological analysis of tumor cells, trained on synthetic data onl...
Saved in:
Published in: | Vietnam journal of computer science 2023-08, Vol.10 (3), p.373-389 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we introduce a new synthetic data generation procedure for augmentation of histopathology image data. This is an extension to our previous research in which we proved the possibility to apply deep learning models for morphological analysis of tumor cells, trained on synthetic data only. The medical problem considered is related to the Ki-67 protein proliferation index calculation. We focused on the problem of cell counting in cell conglomerates, which are considered as structures composed of overlapping tumor cells. The lack of large and standardized data sets is a critical problem in medical image classification. Classical augmentation procedures are not sufficient. Therefore, in this research, we expanded our previous augmentation approach for histopathology images and we proved the possibility to apply it for a cell-counting problem. |
---|---|
ISSN: | 2196-8888 2196-8896 |
DOI: | 10.1142/S2196888823500057 |