Loading…

Transcriptional Activation of Chac1 and Other Atf4-Target Genes Induced by Extracellular l-Serine Depletion is negated with Glycine Consumption in Hepa1-6 Hepatocarcinoma Cells

Mouse embryonic fibroblasts lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo synthesis of l-serine, are particularly sensitive to depletion of extracellular L-serine. In these cells, depletion of l-serine leads to a rapid reduction of intracellular L-seri...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2020-10, Vol.12 (10), p.3018
Main Authors: Hamano, Momoko, Tomonaga, Shozo, Osaki, Yusuke, Oda, Hiroaki, Kato, Hisanori, Furuya, Shigeki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mouse embryonic fibroblasts lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo synthesis of l-serine, are particularly sensitive to depletion of extracellular L-serine. In these cells, depletion of l-serine leads to a rapid reduction of intracellular L-serine, cell growth arrest, and altered expression of a wide variety of genes. However, it remains unclear whether reduced availability of extracellular l-serine elicits such responses in other cell types expressing . Here, we show in the mouse hepatoma cell line Hepa1-6 that extracellular l-serine depletion transiently induced transcriptional activation of Atf4-target genes, including cation transport regulator-like protein 1 ( . Expression levels of these genes returned to normal 24 h after l-serine depletion, and were suppressed by the addition of l-serine or glycine in the medium. Extracellular l-serine depletion caused a reduction of extracellular and intracellular glycine levels but maintained intracellular l-serine levels in the cells. Further, Phgdh and serine hydroxymethyltransferase 2 (Shmt2) were upregulated after l-serine depletion. These results led us to conclude that the Atf4-mediated gene expression program is activated by extracellular l-serine depletion in Hepa1-6 cells expressing , but is antagonized by the subsequent upregulation of l-serine synthesis, mainly from autonomous glycine consumption.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu12103018