Loading…

A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years

Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cove...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (3), p.562
Main Authors: Thonfeld, Frank, Gessner, Ursula, Holzwarth, Stefanie, Kriese, Jennifer, da Ponte, Emmanuel, Huth, Juliane, Kuenzer, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3
cites cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3
container_end_page
container_issue 3
container_start_page 562
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Thonfeld, Frank
Gessner, Ursula
Holzwarth, Stefanie
Kriese, Jennifer
da Ponte, Emmanuel
Huth, Juliane
Kuenzer, Claudia
description Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.
doi_str_mv 10.3390/rs14030562
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715</doaj_id><sourcerecordid>2627828369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBol78BQFvQnUyyX7kWKqtQsGLHjyFbDppt7SbmmyF3vwPnvx7_SVGK-pcZph5vJk3L8vOOVwJoeA6RC5BQF7gQdZDKLEvUeHhv_o4O4txASmE4ApkL6sHbNSE2LFBjBTjitqOeceGpvXrLRv6Vwps4mNkTcvGFFam3e7ePiIb-UCxi8y4LiG6OTEEXu3e3hEQ2E3wm9m8Y89kQjzNjpxZRjr7ySfZ0-j2cXjXnzyM74eDSd-Kgnd9K1WuiJPMqVaFK52yNmkRNAUOokSqOBY5WslrsEKhLRwol4aIZGpJ4iS73_NOvVnodWhWJmy1N43-bvgw0yZ0jV2SniKvqnJqlSilNBXUuaksguPG1rzkeeK62HOtg3_ZJKV64TehTedrLLCssBKFSqjLPcqG9KJA7ncrB_1lif6zRHwC-ll8lQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627828369</pqid></control><display><type>article</type><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><source>Publicly Available Content Database</source><creator>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</creator><creatorcontrib>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</creatorcontrib><description>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14030562</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anomalies ; Bark ; Canopies ; canopy cover loss ; Coniferous forests ; Datasets ; disturbance index ; Drought ; forest ; Forest ecosystems ; Forests ; Landsat ; Landsat-8 ; Mathematical analysis ; Quantiles ; Remote sensing ; Satellites ; Sentinel-2 ; Terrestrial ecosystems ; Time series ; Trees</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (3), p.562</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</citedby><cites>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</cites><orcidid>0000-0001-7364-7006 ; 0000-0002-0369-5819 ; 0000-0002-5354-0364 ; 0000-0002-3371-7206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627828369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627828369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Thonfeld, Frank</creatorcontrib><creatorcontrib>Gessner, Ursula</creatorcontrib><creatorcontrib>Holzwarth, Stefanie</creatorcontrib><creatorcontrib>Kriese, Jennifer</creatorcontrib><creatorcontrib>da Ponte, Emmanuel</creatorcontrib><creatorcontrib>Huth, Juliane</creatorcontrib><creatorcontrib>Kuenzer, Claudia</creatorcontrib><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><title>Remote sensing (Basel, Switzerland)</title><description>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</description><subject>Anomalies</subject><subject>Bark</subject><subject>Canopies</subject><subject>canopy cover loss</subject><subject>Coniferous forests</subject><subject>Datasets</subject><subject>disturbance index</subject><subject>Drought</subject><subject>forest</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>Landsat</subject><subject>Landsat-8</subject><subject>Mathematical analysis</subject><subject>Quantiles</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sentinel-2</subject><subject>Terrestrial ecosystems</subject><subject>Time series</subject><subject>Trees</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBol78BQFvQnUyyX7kWKqtQsGLHjyFbDppt7SbmmyF3vwPnvx7_SVGK-pcZph5vJk3L8vOOVwJoeA6RC5BQF7gQdZDKLEvUeHhv_o4O4txASmE4ApkL6sHbNSE2LFBjBTjitqOeceGpvXrLRv6Vwps4mNkTcvGFFam3e7ePiIb-UCxi8y4LiG6OTEEXu3e3hEQ2E3wm9m8Y89kQjzNjpxZRjr7ySfZ0-j2cXjXnzyM74eDSd-Kgnd9K1WuiJPMqVaFK52yNmkRNAUOokSqOBY5WslrsEKhLRwol4aIZGpJ4iS73_NOvVnodWhWJmy1N43-bvgw0yZ0jV2SniKvqnJqlSilNBXUuaksguPG1rzkeeK62HOtg3_ZJKV64TehTedrLLCssBKFSqjLPcqG9KJA7ncrB_1lif6zRHwC-ll8lQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Thonfeld, Frank</creator><creator>Gessner, Ursula</creator><creator>Holzwarth, Stefanie</creator><creator>Kriese, Jennifer</creator><creator>da Ponte, Emmanuel</creator><creator>Huth, Juliane</creator><creator>Kuenzer, Claudia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7364-7006</orcidid><orcidid>https://orcid.org/0000-0002-0369-5819</orcidid><orcidid>https://orcid.org/0000-0002-5354-0364</orcidid><orcidid>https://orcid.org/0000-0002-3371-7206</orcidid></search><sort><creationdate>20220201</creationdate><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><author>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Bark</topic><topic>Canopies</topic><topic>canopy cover loss</topic><topic>Coniferous forests</topic><topic>Datasets</topic><topic>disturbance index</topic><topic>Drought</topic><topic>forest</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>Landsat</topic><topic>Landsat-8</topic><topic>Mathematical analysis</topic><topic>Quantiles</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sentinel-2</topic><topic>Terrestrial ecosystems</topic><topic>Time series</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thonfeld, Frank</creatorcontrib><creatorcontrib>Gessner, Ursula</creatorcontrib><creatorcontrib>Holzwarth, Stefanie</creatorcontrib><creatorcontrib>Kriese, Jennifer</creatorcontrib><creatorcontrib>da Ponte, Emmanuel</creatorcontrib><creatorcontrib>Huth, Juliane</creatorcontrib><creatorcontrib>Kuenzer, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thonfeld, Frank</au><au>Gessner, Ursula</au><au>Holzwarth, Stefanie</au><au>Kriese, Jennifer</au><au>da Ponte, Emmanuel</au><au>Huth, Juliane</au><au>Kuenzer, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>562</spage><pages>562-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14030562</doi><orcidid>https://orcid.org/0000-0001-7364-7006</orcidid><orcidid>https://orcid.org/0000-0002-0369-5819</orcidid><orcidid>https://orcid.org/0000-0002-5354-0364</orcidid><orcidid>https://orcid.org/0000-0002-3371-7206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (3), p.562
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715
source Publicly Available Content Database
subjects Anomalies
Bark
Canopies
canopy cover loss
Coniferous forests
Datasets
disturbance index
Drought
forest
Forest ecosystems
Forests
Landsat
Landsat-8
Mathematical analysis
Quantiles
Remote sensing
Satellites
Sentinel-2
Terrestrial ecosystems
Time series
Trees
title A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20First%20Assessment%20of%20Canopy%20Cover%20Loss%20in%20Germany%E2%80%99s%20Forests%20after%20the%202018%E2%80%932020%20Drought%20Years&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Thonfeld,%20Frank&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=562&rft.pages=562-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14030562&rft_dat=%3Cproquest_doaj_%3E2627828369%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627828369&rft_id=info:pmid/&rfr_iscdi=true