Loading…
A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years
Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cove...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (3), p.562 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3 |
container_end_page | |
container_issue | 3 |
container_start_page | 562 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 14 |
creator | Thonfeld, Frank Gessner, Ursula Holzwarth, Stefanie Kriese, Jennifer da Ponte, Emmanuel Huth, Juliane Kuenzer, Claudia |
description | Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time. |
doi_str_mv | 10.3390/rs14030562 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715</doaj_id><sourcerecordid>2627828369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBol78BQFvQnUyyX7kWKqtQsGLHjyFbDppt7SbmmyF3vwPnvx7_SVGK-pcZph5vJk3L8vOOVwJoeA6RC5BQF7gQdZDKLEvUeHhv_o4O4txASmE4ApkL6sHbNSE2LFBjBTjitqOeceGpvXrLRv6Vwps4mNkTcvGFFam3e7ePiIb-UCxi8y4LiG6OTEEXu3e3hEQ2E3wm9m8Y89kQjzNjpxZRjr7ySfZ0-j2cXjXnzyM74eDSd-Kgnd9K1WuiJPMqVaFK52yNmkRNAUOokSqOBY5WslrsEKhLRwol4aIZGpJ4iS73_NOvVnodWhWJmy1N43-bvgw0yZ0jV2SniKvqnJqlSilNBXUuaksguPG1rzkeeK62HOtg3_ZJKV64TehTedrLLCssBKFSqjLPcqG9KJA7ncrB_1lif6zRHwC-ll8lQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627828369</pqid></control><display><type>article</type><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><source>Publicly Available Content Database</source><creator>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</creator><creatorcontrib>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</creatorcontrib><description>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14030562</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anomalies ; Bark ; Canopies ; canopy cover loss ; Coniferous forests ; Datasets ; disturbance index ; Drought ; forest ; Forest ecosystems ; Forests ; Landsat ; Landsat-8 ; Mathematical analysis ; Quantiles ; Remote sensing ; Satellites ; Sentinel-2 ; Terrestrial ecosystems ; Time series ; Trees</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (3), p.562</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</citedby><cites>FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</cites><orcidid>0000-0001-7364-7006 ; 0000-0002-0369-5819 ; 0000-0002-5354-0364 ; 0000-0002-3371-7206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2627828369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2627828369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Thonfeld, Frank</creatorcontrib><creatorcontrib>Gessner, Ursula</creatorcontrib><creatorcontrib>Holzwarth, Stefanie</creatorcontrib><creatorcontrib>Kriese, Jennifer</creatorcontrib><creatorcontrib>da Ponte, Emmanuel</creatorcontrib><creatorcontrib>Huth, Juliane</creatorcontrib><creatorcontrib>Kuenzer, Claudia</creatorcontrib><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><title>Remote sensing (Basel, Switzerland)</title><description>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</description><subject>Anomalies</subject><subject>Bark</subject><subject>Canopies</subject><subject>canopy cover loss</subject><subject>Coniferous forests</subject><subject>Datasets</subject><subject>disturbance index</subject><subject>Drought</subject><subject>forest</subject><subject>Forest ecosystems</subject><subject>Forests</subject><subject>Landsat</subject><subject>Landsat-8</subject><subject>Mathematical analysis</subject><subject>Quantiles</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sentinel-2</subject><subject>Terrestrial ecosystems</subject><subject>Time series</subject><subject>Trees</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBol78BQFvQnUyyX7kWKqtQsGLHjyFbDppt7SbmmyF3vwPnvx7_SVGK-pcZph5vJk3L8vOOVwJoeA6RC5BQF7gQdZDKLEvUeHhv_o4O4txASmE4ApkL6sHbNSE2LFBjBTjitqOeceGpvXrLRv6Vwps4mNkTcvGFFam3e7ePiIb-UCxi8y4LiG6OTEEXu3e3hEQ2E3wm9m8Y89kQjzNjpxZRjr7ySfZ0-j2cXjXnzyM74eDSd-Kgnd9K1WuiJPMqVaFK52yNmkRNAUOokSqOBY5WslrsEKhLRwol4aIZGpJ4iS73_NOvVnodWhWJmy1N43-bvgw0yZ0jV2SniKvqnJqlSilNBXUuaksguPG1rzkeeK62HOtg3_ZJKV64TehTedrLLCssBKFSqjLPcqG9KJA7ncrB_1lif6zRHwC-ll8lQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Thonfeld, Frank</creator><creator>Gessner, Ursula</creator><creator>Holzwarth, Stefanie</creator><creator>Kriese, Jennifer</creator><creator>da Ponte, Emmanuel</creator><creator>Huth, Juliane</creator><creator>Kuenzer, Claudia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7364-7006</orcidid><orcidid>https://orcid.org/0000-0002-0369-5819</orcidid><orcidid>https://orcid.org/0000-0002-5354-0364</orcidid><orcidid>https://orcid.org/0000-0002-3371-7206</orcidid></search><sort><creationdate>20220201</creationdate><title>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</title><author>Thonfeld, Frank ; Gessner, Ursula ; Holzwarth, Stefanie ; Kriese, Jennifer ; da Ponte, Emmanuel ; Huth, Juliane ; Kuenzer, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Bark</topic><topic>Canopies</topic><topic>canopy cover loss</topic><topic>Coniferous forests</topic><topic>Datasets</topic><topic>disturbance index</topic><topic>Drought</topic><topic>forest</topic><topic>Forest ecosystems</topic><topic>Forests</topic><topic>Landsat</topic><topic>Landsat-8</topic><topic>Mathematical analysis</topic><topic>Quantiles</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sentinel-2</topic><topic>Terrestrial ecosystems</topic><topic>Time series</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thonfeld, Frank</creatorcontrib><creatorcontrib>Gessner, Ursula</creatorcontrib><creatorcontrib>Holzwarth, Stefanie</creatorcontrib><creatorcontrib>Kriese, Jennifer</creatorcontrib><creatorcontrib>da Ponte, Emmanuel</creatorcontrib><creatorcontrib>Huth, Juliane</creatorcontrib><creatorcontrib>Kuenzer, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thonfeld, Frank</au><au>Gessner, Ursula</au><au>Holzwarth, Stefanie</au><au>Kriese, Jennifer</au><au>da Ponte, Emmanuel</au><au>Huth, Juliane</au><au>Kuenzer, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>562</spage><pages>562-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14030562</doi><orcidid>https://orcid.org/0000-0001-7364-7006</orcidid><orcidid>https://orcid.org/0000-0002-0369-5819</orcidid><orcidid>https://orcid.org/0000-0002-5354-0364</orcidid><orcidid>https://orcid.org/0000-0002-3371-7206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2022-02, Vol.14 (3), p.562 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d21887dc93744a80b5a8c20f1acb1715 |
source | Publicly Available Content Database |
subjects | Anomalies Bark Canopies canopy cover loss Coniferous forests Datasets disturbance index Drought forest Forest ecosystems Forests Landsat Landsat-8 Mathematical analysis Quantiles Remote sensing Satellites Sentinel-2 Terrestrial ecosystems Time series Trees |
title | A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20First%20Assessment%20of%20Canopy%20Cover%20Loss%20in%20Germany%E2%80%99s%20Forests%20after%20the%202018%E2%80%932020%20Drought%20Years&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Thonfeld,%20Frank&rft.date=2022-02-01&rft.volume=14&rft.issue=3&rft.spage=562&rft.pages=562-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14030562&rft_dat=%3Cproquest_doaj_%3E2627828369%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-c4959e1e45eb96f7f9cc0563ed010372e812652c41b0c392c6f09fd0122eab4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627828369&rft_id=info:pmid/&rfr_iscdi=true |