Loading…
Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes
An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invade...
Saved in:
Published in: | BMC genomics 2024-10, Vol.25 (1), p.949-12, Article 949 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 949 |
container_title | BMC genomics |
container_volume | 25 |
creator | Yainna, Sudeeptha Hilliou, Frédérique Haenniger, Sabine d'Alençon, Emmanuelle Brévault, Thierry Nam, Kiwoong |
description | An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses.
Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties.
These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize. |
doi_str_mv | 10.1186/s12864-024-10845-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d23f337952914b249a0e350107f54a62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811773197</galeid><doaj_id>oai_doaj_org_article_d23f337952914b249a0e350107f54a62</doaj_id><sourcerecordid>A811773197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</originalsourceid><addsrcrecordid>eNptkl1v0zAUhiMEYmPwB7hAkbjZLjJ8_BE7V6iqgFWqBOLj2nIdp3WVxMV2Msqvx2nHWCfkC9vHz_vaPnqz7DWgawBRvguARUkLhGkBSFBW8CfZOVAOBYaSPn2wPstehLBFCLjA7Hl2RioiGOL4PNvOarWLdjS5GV07ROv63DW57UcVpmqj2jZXvtvfOt-FPLq8U_a3yW9t3OQ7F00frWon3rWj6dJ2ks_30emNd53Jv1CG8rXpTXiZPUtuwby6my-yHx8_fJ_fFMvPnxbz2bLQDEgsdIVKVa6MoRwTUZZIK0yRxsCw4KhEfIWVgVoTUQMHUQnECKJVjRuFmaKMXGSLo2_t1FbuvO2U30unrDwUnF9L5aPVrZE1Jg0hvGK4ArrCtFLIEIYA8YZRVeLk9f7otRtWnal1-p9X7Ynp6UlvN3LtRglAS8wZTQ5XR4fNI93NbCmnGqK8xJiQERJ7eXebdz8HE6LsbNCmbVVv3BAkAWCoooSIhL59hG7d4PvU1wMFGFJT_lFrlX5r-8alR-rJVM4EAOcEKp6o6_9QadSms9r1prGpfiK4OhEkJppfca2GEOTi29dTFh9Z7V0I3jT3TQAkpxjLY4xlirE8xFhOojcP234v-Ztb8gcfrujZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115121304</pqid></control><display><type>article</type><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</creator><creatorcontrib>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</creatorcontrib><description>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses.
Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties.
These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10845-7</identifier><identifier>PMID: 39385072</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaptation (Biology) ; Adaptation, Physiological - genetics ; Adaptive sampling ; Agricultural production ; Animals ; Army-worms ; Control ; Corn ; Cytochrome ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P450 ; Cytochromes P450 ; Datasets ; Diseases and pests ; Environmental aspects ; Evolution ; Evolution & development ; Evolution, Molecular ; Evolutionary genetics ; Fall armyworm ; Gene expression ; Genes ; Genetic analysis ; Genetic aspects ; Genomes ; Genomic analysis ; Genomics ; Grasses ; Growth ; Host-plant adaptation ; Identification and classification ; Indigenous species ; Insecticides ; Insects ; Introduced Species ; Invasive species ; Invasive success ; Larva - genetics ; Life Sciences ; Metabolites ; Phylogenetics ; Population genetics ; Principal components analysis ; Rice ; Sorghum ; Spodoptera - genetics ; Spodoptera frugiperda ; Strain analysis ; Success ; Survival ; Transcriptome ; Transcriptomics ; Zea mays - genetics ; Zea mays - parasitology</subject><ispartof>BMC genomics, 2024-10, Vol.25 (1), p.949-12, Article 949</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3115121304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39385072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04762233$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yainna, Sudeeptha</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Haenniger, Sabine</creatorcontrib><creatorcontrib>d'Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Brévault, Thierry</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses.
Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties.
These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</description><subject>Adaptation (Biology)</subject><subject>Adaptation, Physiological - genetics</subject><subject>Adaptive sampling</subject><subject>Agricultural production</subject><subject>Animals</subject><subject>Army-worms</subject><subject>Control</subject><subject>Corn</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P450</subject><subject>Cytochromes P450</subject><subject>Datasets</subject><subject>Diseases and pests</subject><subject>Environmental aspects</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fall armyworm</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Growth</subject><subject>Host-plant adaptation</subject><subject>Identification and classification</subject><subject>Indigenous species</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Invasive success</subject><subject>Larva - genetics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Phylogenetics</subject><subject>Population genetics</subject><subject>Principal components analysis</subject><subject>Rice</subject><subject>Sorghum</subject><subject>Spodoptera - genetics</subject><subject>Spodoptera frugiperda</subject><subject>Strain analysis</subject><subject>Success</subject><subject>Survival</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Zea mays - genetics</subject><subject>Zea mays - parasitology</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1v0zAUhiMEYmPwB7hAkbjZLjJ8_BE7V6iqgFWqBOLj2nIdp3WVxMV2Msqvx2nHWCfkC9vHz_vaPnqz7DWgawBRvguARUkLhGkBSFBW8CfZOVAOBYaSPn2wPstehLBFCLjA7Hl2RioiGOL4PNvOarWLdjS5GV07ROv63DW57UcVpmqj2jZXvtvfOt-FPLq8U_a3yW9t3OQ7F00frWon3rWj6dJ2ks_30emNd53Jv1CG8rXpTXiZPUtuwby6my-yHx8_fJ_fFMvPnxbz2bLQDEgsdIVKVa6MoRwTUZZIK0yRxsCw4KhEfIWVgVoTUQMHUQnECKJVjRuFmaKMXGSLo2_t1FbuvO2U30unrDwUnF9L5aPVrZE1Jg0hvGK4ArrCtFLIEIYA8YZRVeLk9f7otRtWnal1-p9X7Ynp6UlvN3LtRglAS8wZTQ5XR4fNI93NbCmnGqK8xJiQERJ7eXebdz8HE6LsbNCmbVVv3BAkAWCoooSIhL59hG7d4PvU1wMFGFJT_lFrlX5r-8alR-rJVM4EAOcEKp6o6_9QadSms9r1prGpfiK4OhEkJppfca2GEOTi29dTFh9Z7V0I3jT3TQAkpxjLY4xlirE8xFhOojcP234v-Ztb8gcfrujZ</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Yainna, Sudeeptha</creator><creator>Hilliou, Frédérique</creator><creator>Haenniger, Sabine</creator><creator>d'Alençon, Emmanuelle</creator><creator>Brévault, Thierry</creator><creator>Nam, Kiwoong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241009</creationdate><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><author>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation (Biology)</topic><topic>Adaptation, Physiological - genetics</topic><topic>Adaptive sampling</topic><topic>Agricultural production</topic><topic>Animals</topic><topic>Army-worms</topic><topic>Control</topic><topic>Corn</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P450</topic><topic>Cytochromes P450</topic><topic>Datasets</topic><topic>Diseases and pests</topic><topic>Environmental aspects</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fall armyworm</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Growth</topic><topic>Host-plant adaptation</topic><topic>Identification and classification</topic><topic>Indigenous species</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Invasive success</topic><topic>Larva - genetics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Phylogenetics</topic><topic>Population genetics</topic><topic>Principal components analysis</topic><topic>Rice</topic><topic>Sorghum</topic><topic>Spodoptera - genetics</topic><topic>Spodoptera frugiperda</topic><topic>Strain analysis</topic><topic>Success</topic><topic>Survival</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Zea mays - genetics</topic><topic>Zea mays - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yainna, Sudeeptha</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Haenniger, Sabine</creatorcontrib><creatorcontrib>d'Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Brévault, Thierry</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yainna, Sudeeptha</au><au>Hilliou, Frédérique</au><au>Haenniger, Sabine</au><au>d'Alençon, Emmanuelle</au><au>Brévault, Thierry</au><au>Nam, Kiwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>949</spage><epage>12</epage><pages>949-12</pages><artnum>949</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses.
Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties.
These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39385072</pmid><doi>10.1186/s12864-024-10845-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2024-10, Vol.25 (1), p.949-12, Article 949 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d23f337952914b249a0e350107f54a62 |
source | Publicly Available Content (ProQuest); PubMed Central; Coronavirus Research Database |
subjects | Adaptation (Biology) Adaptation, Physiological - genetics Adaptive sampling Agricultural production Animals Army-worms Control Corn Cytochrome Cytochrome P-450 Enzyme System - genetics Cytochrome P450 Cytochromes P450 Datasets Diseases and pests Environmental aspects Evolution Evolution & development Evolution, Molecular Evolutionary genetics Fall armyworm Gene expression Genes Genetic analysis Genetic aspects Genomes Genomic analysis Genomics Grasses Growth Host-plant adaptation Identification and classification Indigenous species Insecticides Insects Introduced Species Invasive species Invasive success Larva - genetics Life Sciences Metabolites Phylogenetics Population genetics Principal components analysis Rice Sorghum Spodoptera - genetics Spodoptera frugiperda Strain analysis Success Survival Transcriptome Transcriptomics Zea mays - genetics Zea mays - parasitology |
title | Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20evolution%20of%20invasive%20fall%20armyworms%20to%20maize%20with%20potential%20involvement%20of%20Cytochrome%20P450%20genes&rft.jtitle=BMC%20genomics&rft.au=Yainna,%20Sudeeptha&rft.date=2024-10-09&rft.volume=25&rft.issue=1&rft.spage=949&rft.epage=12&rft.pages=949-12&rft.artnum=949&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10845-7&rft_dat=%3Cgale_doaj_%3EA811773197%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115121304&rft_id=info:pmid/39385072&rft_galeid=A811773197&rfr_iscdi=true |