Loading…

Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes

An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invade...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2024-10, Vol.25 (1), p.949-12, Article 949
Main Authors: Yainna, Sudeeptha, Hilliou, Frédérique, Haenniger, Sabine, d'Alençon, Emmanuelle, Brévault, Thierry, Nam, Kiwoong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453
container_end_page 12
container_issue 1
container_start_page 949
container_title BMC genomics
container_volume 25
creator Yainna, Sudeeptha
Hilliou, Frédérique
Haenniger, Sabine
d'Alençon, Emmanuelle
Brévault, Thierry
Nam, Kiwoong
description An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.
doi_str_mv 10.1186/s12864-024-10845-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d23f337952914b249a0e350107f54a62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811773197</galeid><doaj_id>oai_doaj_org_article_d23f337952914b249a0e350107f54a62</doaj_id><sourcerecordid>A811773197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</originalsourceid><addsrcrecordid>eNptkl1v0zAUhiMEYmPwB7hAkbjZLjJ8_BE7V6iqgFWqBOLj2nIdp3WVxMV2Msqvx2nHWCfkC9vHz_vaPnqz7DWgawBRvguARUkLhGkBSFBW8CfZOVAOBYaSPn2wPstehLBFCLjA7Hl2RioiGOL4PNvOarWLdjS5GV07ROv63DW57UcVpmqj2jZXvtvfOt-FPLq8U_a3yW9t3OQ7F00frWon3rWj6dJ2ks_30emNd53Jv1CG8rXpTXiZPUtuwby6my-yHx8_fJ_fFMvPnxbz2bLQDEgsdIVKVa6MoRwTUZZIK0yRxsCw4KhEfIWVgVoTUQMHUQnECKJVjRuFmaKMXGSLo2_t1FbuvO2U30unrDwUnF9L5aPVrZE1Jg0hvGK4ArrCtFLIEIYA8YZRVeLk9f7otRtWnal1-p9X7Ynp6UlvN3LtRglAS8wZTQ5XR4fNI93NbCmnGqK8xJiQERJ7eXebdz8HE6LsbNCmbVVv3BAkAWCoooSIhL59hG7d4PvU1wMFGFJT_lFrlX5r-8alR-rJVM4EAOcEKp6o6_9QadSms9r1prGpfiK4OhEkJppfca2GEOTi29dTFh9Z7V0I3jT3TQAkpxjLY4xlirE8xFhOojcP234v-Ztb8gcfrujZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115121304</pqid></control><display><type>article</type><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</creator><creatorcontrib>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</creatorcontrib><description>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-024-10845-7</identifier><identifier>PMID: 39385072</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaptation (Biology) ; Adaptation, Physiological - genetics ; Adaptive sampling ; Agricultural production ; Animals ; Army-worms ; Control ; Corn ; Cytochrome ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P450 ; Cytochromes P450 ; Datasets ; Diseases and pests ; Environmental aspects ; Evolution ; Evolution &amp; development ; Evolution, Molecular ; Evolutionary genetics ; Fall armyworm ; Gene expression ; Genes ; Genetic analysis ; Genetic aspects ; Genomes ; Genomic analysis ; Genomics ; Grasses ; Growth ; Host-plant adaptation ; Identification and classification ; Indigenous species ; Insecticides ; Insects ; Introduced Species ; Invasive species ; Invasive success ; Larva - genetics ; Life Sciences ; Metabolites ; Phylogenetics ; Population genetics ; Principal components analysis ; Rice ; Sorghum ; Spodoptera - genetics ; Spodoptera frugiperda ; Strain analysis ; Success ; Survival ; Transcriptome ; Transcriptomics ; Zea mays - genetics ; Zea mays - parasitology</subject><ispartof>BMC genomics, 2024-10, Vol.25 (1), p.949-12, Article 949</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3115121304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39385072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04762233$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yainna, Sudeeptha</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Haenniger, Sabine</creatorcontrib><creatorcontrib>d'Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Brévault, Thierry</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</description><subject>Adaptation (Biology)</subject><subject>Adaptation, Physiological - genetics</subject><subject>Adaptive sampling</subject><subject>Agricultural production</subject><subject>Animals</subject><subject>Army-worms</subject><subject>Control</subject><subject>Corn</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P450</subject><subject>Cytochromes P450</subject><subject>Datasets</subject><subject>Diseases and pests</subject><subject>Environmental aspects</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Fall armyworm</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Grasses</subject><subject>Growth</subject><subject>Host-plant adaptation</subject><subject>Identification and classification</subject><subject>Indigenous species</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Invasive success</subject><subject>Larva - genetics</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Phylogenetics</subject><subject>Population genetics</subject><subject>Principal components analysis</subject><subject>Rice</subject><subject>Sorghum</subject><subject>Spodoptera - genetics</subject><subject>Spodoptera frugiperda</subject><subject>Strain analysis</subject><subject>Success</subject><subject>Survival</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><subject>Zea mays - genetics</subject><subject>Zea mays - parasitology</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1v0zAUhiMEYmPwB7hAkbjZLjJ8_BE7V6iqgFWqBOLj2nIdp3WVxMV2Msqvx2nHWCfkC9vHz_vaPnqz7DWgawBRvguARUkLhGkBSFBW8CfZOVAOBYaSPn2wPstehLBFCLjA7Hl2RioiGOL4PNvOarWLdjS5GV07ROv63DW57UcVpmqj2jZXvtvfOt-FPLq8U_a3yW9t3OQ7F00frWon3rWj6dJ2ks_30emNd53Jv1CG8rXpTXiZPUtuwby6my-yHx8_fJ_fFMvPnxbz2bLQDEgsdIVKVa6MoRwTUZZIK0yRxsCw4KhEfIWVgVoTUQMHUQnECKJVjRuFmaKMXGSLo2_t1FbuvO2U30unrDwUnF9L5aPVrZE1Jg0hvGK4ArrCtFLIEIYA8YZRVeLk9f7otRtWnal1-p9X7Ynp6UlvN3LtRglAS8wZTQ5XR4fNI93NbCmnGqK8xJiQERJ7eXebdz8HE6LsbNCmbVVv3BAkAWCoooSIhL59hG7d4PvU1wMFGFJT_lFrlX5r-8alR-rJVM4EAOcEKp6o6_9QadSms9r1prGpfiK4OhEkJppfca2GEOTi29dTFh9Z7V0I3jT3TQAkpxjLY4xlirE8xFhOojcP234v-Ztb8gcfrujZ</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Yainna, Sudeeptha</creator><creator>Hilliou, Frédérique</creator><creator>Haenniger, Sabine</creator><creator>d'Alençon, Emmanuelle</creator><creator>Brévault, Thierry</creator><creator>Nam, Kiwoong</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241009</creationdate><title>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</title><author>Yainna, Sudeeptha ; Hilliou, Frédérique ; Haenniger, Sabine ; d'Alençon, Emmanuelle ; Brévault, Thierry ; Nam, Kiwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation (Biology)</topic><topic>Adaptation, Physiological - genetics</topic><topic>Adaptive sampling</topic><topic>Agricultural production</topic><topic>Animals</topic><topic>Army-worms</topic><topic>Control</topic><topic>Corn</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P450</topic><topic>Cytochromes P450</topic><topic>Datasets</topic><topic>Diseases and pests</topic><topic>Environmental aspects</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Fall armyworm</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Grasses</topic><topic>Growth</topic><topic>Host-plant adaptation</topic><topic>Identification and classification</topic><topic>Indigenous species</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Invasive success</topic><topic>Larva - genetics</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Phylogenetics</topic><topic>Population genetics</topic><topic>Principal components analysis</topic><topic>Rice</topic><topic>Sorghum</topic><topic>Spodoptera - genetics</topic><topic>Spodoptera frugiperda</topic><topic>Strain analysis</topic><topic>Success</topic><topic>Survival</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><topic>Zea mays - genetics</topic><topic>Zea mays - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yainna, Sudeeptha</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Haenniger, Sabine</creatorcontrib><creatorcontrib>d'Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Brévault, Thierry</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yainna, Sudeeptha</au><au>Hilliou, Frédérique</au><au>Haenniger, Sabine</au><au>d'Alençon, Emmanuelle</au><au>Brévault, Thierry</au><au>Nam, Kiwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2024-10-09</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>949</spage><epage>12</epage><pages>949-12</pages><artnum>949</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas. The invasion of this species was reported from West Africa in 2016, followed by spreading across the Old World. We tested adaptive evolution to maize using 56 native samples from the USA and 59 invasive samples from Senegal, based on genomic and transcriptomic analyses. Principal component analysis revealed that the Senegalese population originated from corn strain. Three genetic loci were identified as targets of selective sweeps in the Senegalese population. These loci include four Cytochrome P450 genes (CYP321B1, CYP321B3, CYP321B4, and CYP337B5), as well as 12 genes of which the function is unclear. Transcriptomic analysis showed an overexpression of CYP321B1 and CYP321B3 genes in sfC samples compared to sfR samples. Additionally, these two genes were overexpressed when corn strain samples were exposed to maize. In larval feeding assays, the Senegalese population exhibited higher survival rates than a Floridan population across all four tested maize varieties. These results suggest that the analyzed Senegalese population experienced adaptive evolution involving loci containing CYP genes, potentially associated with an increase in the survival rates on maize. We argue that the invasive success of the fall armyworm is contributed by stabilizing selection to maize.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39385072</pmid><doi>10.1186/s12864-024-10845-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2024-10, Vol.25 (1), p.949-12, Article 949
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d23f337952914b249a0e350107f54a62
source Publicly Available Content (ProQuest); PubMed Central; Coronavirus Research Database
subjects Adaptation (Biology)
Adaptation, Physiological - genetics
Adaptive sampling
Agricultural production
Animals
Army-worms
Control
Corn
Cytochrome
Cytochrome P-450 Enzyme System - genetics
Cytochrome P450
Cytochromes P450
Datasets
Diseases and pests
Environmental aspects
Evolution
Evolution & development
Evolution, Molecular
Evolutionary genetics
Fall armyworm
Gene expression
Genes
Genetic analysis
Genetic aspects
Genomes
Genomic analysis
Genomics
Grasses
Growth
Host-plant adaptation
Identification and classification
Indigenous species
Insecticides
Insects
Introduced Species
Invasive species
Invasive success
Larva - genetics
Life Sciences
Metabolites
Phylogenetics
Population genetics
Principal components analysis
Rice
Sorghum
Spodoptera - genetics
Spodoptera frugiperda
Strain analysis
Success
Survival
Transcriptome
Transcriptomics
Zea mays - genetics
Zea mays - parasitology
title Adaptive evolution of invasive fall armyworms to maize with potential involvement of Cytochrome P450 genes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20evolution%20of%20invasive%20fall%20armyworms%20to%20maize%20with%20potential%20involvement%20of%20Cytochrome%20P450%20genes&rft.jtitle=BMC%20genomics&rft.au=Yainna,%20Sudeeptha&rft.date=2024-10-09&rft.volume=25&rft.issue=1&rft.spage=949&rft.epage=12&rft.pages=949-12&rft.artnum=949&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-024-10845-7&rft_dat=%3Cgale_doaj_%3EA811773197%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-c906a6bee47238660ca240c2152870607b2ae1dc38d171898053049d2fa25a453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115121304&rft_id=info:pmid/39385072&rft_galeid=A811773197&rfr_iscdi=true