Loading…

Recent Developments in Satellite Remote Sensing for Air Pollution Surveillance in Support of Sustainable Development Goals

Air pollution is an integral part of climatic, environmental, and socioeconomic current affairs and a cross-cutting component of certain United Nations Sustainable Development Goals (SDGs). Hence, reliable information on air pollution and human exposure is a crucial element in policy recommendations...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-08, Vol.16 (16), p.2932
Main Authors: Stratoulias, Dimitris, Nuthammachot, Narissara, Dejchanchaiwong, Racha, Tekasakul, Perapong, Carmichael, Gregory R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air pollution is an integral part of climatic, environmental, and socioeconomic current affairs and a cross-cutting component of certain United Nations Sustainable Development Goals (SDGs). Hence, reliable information on air pollution and human exposure is a crucial element in policy recommendations and decisions. At the same time, Earth Observation is steadily gaining confidence as a data input in the calculation of various SDG indicators. The current paper focuses on the usability of modern satellite remote sensing in the context of SDGs relevant to air quality. We introduce the socioeconomic importance of air quality and discuss the current uptake of geospatial information. The latest developments in Earth Observation provide measurements of finer spatial, temporal, and radiometric resolution products with increased global coverage, long-term continuation, and coherence in measurements. Leveraging on the two latest operational satellite technologies available, namely the Sentinel-5P and the Geostationary Environment Monitoring Spectrometer (GEMS) missions, we demonstrate two potential operational applications for quantifying air pollution at city and regional scales. Based on the two examples and by discussing the near-future anticipated geospatial capabilities, we showcase and advocate that the potential of satellite remote sensing as a, complementary to ground station networks, source of air pollution information is gaining confidence. As such, it can be an invaluable tool for quantifying global air pollution and deriving robust population exposure estimates.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16162932