Loading…
High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb
High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimension...
Saved in:
Published in: | Communications physics 2023-09, Vol.6 (1), p.278-12, Article 278 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 278 |
container_title | Communications physics |
container_volume | 6 |
creator | Cheng, Xiang Chang, Kai-Chi Sarihan, Murat Can Mueller, Andrew Spiropulu, Maria Shaw, Matthew D. Korzh, Boris Faraon, Andrei Wong, Franco N. C. Shapiro, Jeffrey H. Wong, Chee Wei |
description | High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimensional quantum information processing in its spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is verified through Franson-interference recurrences and temporal correlation with low-jitter detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quantified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and entanglement distribution show the singly-filtered quantum frequency comb’s capability for high-efficiency quantum information processing and high-capacity quantum networks.
High-dimensional quantum entanglement is generated via a singly filtered biphoton frequency comb, with energy-time entanglement witnessed for both between time bins and frequency bins. Entanglement distribution of such high dimensional entangled state is verified with high quality and provides a testbed for high-dimensional quantum key distribution. |
doi_str_mv | 10.1038/s42005-023-01370-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d2893bb7cca646e7a4fbaabeefb1153d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d2893bb7cca646e7a4fbaabeefb1153d</doaj_id><sourcerecordid>2869807391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83</originalsourceid><addsrcrecordid>eNp9UTtPwzAQjhBIVNA_wBSJ2XD2pXmMqAJaqRILDEyW7ZxbV2lc7HTov8cQRJmY7qHvobsvy2443HHA-j4WAmDGQCADjhUwcZZNBDYNw3IG53_6y2wa4xYABC-gwnKSvS_cesNat6M-Ot-rLh9Sz2ygjwP15phTP6h-3VECDLnrc5VHl-Yjs64bKFCba7ff-MH3-Ylk_E5fZxdWdZGmP_Uqe3t6fJ0v2OrleTl_WDFTiGZgFTdlzTlYgahNqbDg1JABTaQ4CuTWGJqZFqHlrdbY2JIs1AbB6oKbGq-y5ajberWV--B2KhylV05-L3xYSxUGZzqSragb1LoyRpVFSZUqrFYqOVnN-QzbpHU7au2DT6fEQW79IaSvRCnqsqnTzxqeUGJEmeBjDGR_XTnIr0TkmIhMicjvRKRIJBxJMYH7NYWT9D-sTyBakDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869807391</pqid></control><display><type>article</type><title>High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb</title><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Cheng, Xiang ; Chang, Kai-Chi ; Sarihan, Murat Can ; Mueller, Andrew ; Spiropulu, Maria ; Shaw, Matthew D. ; Korzh, Boris ; Faraon, Andrei ; Wong, Franco N. C. ; Shapiro, Jeffrey H. ; Wong, Chee Wei</creator><creatorcontrib>Cheng, Xiang ; Chang, Kai-Chi ; Sarihan, Murat Can ; Mueller, Andrew ; Spiropulu, Maria ; Shaw, Matthew D. ; Korzh, Boris ; Faraon, Andrei ; Wong, Franco N. C. ; Shapiro, Jeffrey H. ; Wong, Chee Wei</creatorcontrib><description>High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimensional quantum information processing in its spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is verified through Franson-interference recurrences and temporal correlation with low-jitter detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quantified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and entanglement distribution show the singly-filtered quantum frequency comb’s capability for high-efficiency quantum information processing and high-capacity quantum networks.
High-dimensional quantum entanglement is generated via a singly filtered biphoton frequency comb, with energy-time entanglement witnessed for both between time bins and frequency bins. Entanglement distribution of such high dimensional entangled state is verified with high quality and provides a testbed for high-dimensional quantum key distribution.</description><identifier>ISSN: 2399-3650</identifier><identifier>EISSN: 2399-3650</identifier><identifier>DOI: 10.1038/s42005-023-01370-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/3925 ; 639/766/483 ; Bins ; Data processing ; Electrons ; Entangled states ; Fabry-Perot interferometers ; Fault tolerance ; Information processing ; Physics ; Physics and Astronomy ; Quantum computing ; Quantum cryptography ; Quantum entanglement ; Quantum phenomena</subject><ispartof>Communications physics, 2023-09, Vol.6 (1), p.278-12, Article 278</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83</citedby><cites>FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83</cites><orcidid>0000-0003-4632-8477 ; 0000-0001-8172-7081 ; 0000-0002-6094-5861 ; 0000-0003-3800-7980 ; 0000-0002-8262-9720 ; 0000-0002-8141-391X ; 0000-0001-7652-7720 ; 0000-0002-2562-0009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2869807391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Chang, Kai-Chi</creatorcontrib><creatorcontrib>Sarihan, Murat Can</creatorcontrib><creatorcontrib>Mueller, Andrew</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Shaw, Matthew D.</creatorcontrib><creatorcontrib>Korzh, Boris</creatorcontrib><creatorcontrib>Faraon, Andrei</creatorcontrib><creatorcontrib>Wong, Franco N. C.</creatorcontrib><creatorcontrib>Shapiro, Jeffrey H.</creatorcontrib><creatorcontrib>Wong, Chee Wei</creatorcontrib><title>High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb</title><title>Communications physics</title><addtitle>Commun Phys</addtitle><description>High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimensional quantum information processing in its spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is verified through Franson-interference recurrences and temporal correlation with low-jitter detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quantified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and entanglement distribution show the singly-filtered quantum frequency comb’s capability for high-efficiency quantum information processing and high-capacity quantum networks.
High-dimensional quantum entanglement is generated via a singly filtered biphoton frequency comb, with energy-time entanglement witnessed for both between time bins and frequency bins. Entanglement distribution of such high dimensional entangled state is verified with high quality and provides a testbed for high-dimensional quantum key distribution.</description><subject>639/766/400/3925</subject><subject>639/766/483</subject><subject>Bins</subject><subject>Data processing</subject><subject>Electrons</subject><subject>Entangled states</subject><subject>Fabry-Perot interferometers</subject><subject>Fault tolerance</subject><subject>Information processing</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><issn>2399-3650</issn><issn>2399-3650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UTtPwzAQjhBIVNA_wBSJ2XD2pXmMqAJaqRILDEyW7ZxbV2lc7HTov8cQRJmY7qHvobsvy2443HHA-j4WAmDGQCADjhUwcZZNBDYNw3IG53_6y2wa4xYABC-gwnKSvS_cesNat6M-Ot-rLh9Sz2ygjwP15phTP6h-3VECDLnrc5VHl-Yjs64bKFCba7ff-MH3-Ylk_E5fZxdWdZGmP_Uqe3t6fJ0v2OrleTl_WDFTiGZgFTdlzTlYgahNqbDg1JABTaQ4CuTWGJqZFqHlrdbY2JIs1AbB6oKbGq-y5ajberWV--B2KhylV05-L3xYSxUGZzqSragb1LoyRpVFSZUqrFYqOVnN-QzbpHU7au2DT6fEQW79IaSvRCnqsqnTzxqeUGJEmeBjDGR_XTnIr0TkmIhMicjvRKRIJBxJMYH7NYWT9D-sTyBakDQ</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Cheng, Xiang</creator><creator>Chang, Kai-Chi</creator><creator>Sarihan, Murat Can</creator><creator>Mueller, Andrew</creator><creator>Spiropulu, Maria</creator><creator>Shaw, Matthew D.</creator><creator>Korzh, Boris</creator><creator>Faraon, Andrei</creator><creator>Wong, Franco N. C.</creator><creator>Shapiro, Jeffrey H.</creator><creator>Wong, Chee Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4632-8477</orcidid><orcidid>https://orcid.org/0000-0001-8172-7081</orcidid><orcidid>https://orcid.org/0000-0002-6094-5861</orcidid><orcidid>https://orcid.org/0000-0003-3800-7980</orcidid><orcidid>https://orcid.org/0000-0002-8262-9720</orcidid><orcidid>https://orcid.org/0000-0002-8141-391X</orcidid><orcidid>https://orcid.org/0000-0001-7652-7720</orcidid><orcidid>https://orcid.org/0000-0002-2562-0009</orcidid></search><sort><creationdate>20230928</creationdate><title>High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb</title><author>Cheng, Xiang ; Chang, Kai-Chi ; Sarihan, Murat Can ; Mueller, Andrew ; Spiropulu, Maria ; Shaw, Matthew D. ; Korzh, Boris ; Faraon, Andrei ; Wong, Franco N. C. ; Shapiro, Jeffrey H. ; Wong, Chee Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/400/3925</topic><topic>639/766/483</topic><topic>Bins</topic><topic>Data processing</topic><topic>Electrons</topic><topic>Entangled states</topic><topic>Fabry-Perot interferometers</topic><topic>Fault tolerance</topic><topic>Information processing</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Chang, Kai-Chi</creatorcontrib><creatorcontrib>Sarihan, Murat Can</creatorcontrib><creatorcontrib>Mueller, Andrew</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Shaw, Matthew D.</creatorcontrib><creatorcontrib>Korzh, Boris</creatorcontrib><creatorcontrib>Faraon, Andrei</creatorcontrib><creatorcontrib>Wong, Franco N. C.</creatorcontrib><creatorcontrib>Shapiro, Jeffrey H.</creatorcontrib><creatorcontrib>Wong, Chee Wei</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Communications physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xiang</au><au>Chang, Kai-Chi</au><au>Sarihan, Murat Can</au><au>Mueller, Andrew</au><au>Spiropulu, Maria</au><au>Shaw, Matthew D.</au><au>Korzh, Boris</au><au>Faraon, Andrei</au><au>Wong, Franco N. C.</au><au>Shapiro, Jeffrey H.</au><au>Wong, Chee Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb</atitle><jtitle>Communications physics</jtitle><stitle>Commun Phys</stitle><date>2023-09-28</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>278</spage><epage>12</epage><pages>278-12</pages><artnum>278</artnum><issn>2399-3650</issn><eissn>2399-3650</eissn><abstract>High-dimensional quantum entanglement is a cornerstone for advanced technology enabling large-scale noise-tolerant quantum systems, fault-tolerant quantum computing, and distributed quantum networks. The recently developed biphoton frequency comb (BFC) provides a powerful platform for high-dimensional quantum information processing in its spectral and temporal quantum modes. Here we propose and generate a singly-filtered high-dimensional BFC via spontaneous parametric down-conversion by spectrally shaping only the signal photons with a Fabry-Pérot cavity. High-dimensional energy-time entanglement is verified through Franson-interference recurrences and temporal correlation with low-jitter detectors. Frequency- and temporal- entanglement of our singly-filtered BFC is then quantified by Schmidt mode decomposition. Subsequently, we distribute the high-dimensional singly-filtered BFC state over a 10 km fiber link with a post-distribution time-bin dimension lower bounded to be at least 168. Our demonstrations of high-dimensional entanglement and entanglement distribution show the singly-filtered quantum frequency comb’s capability for high-efficiency quantum information processing and high-capacity quantum networks.
High-dimensional quantum entanglement is generated via a singly filtered biphoton frequency comb, with energy-time entanglement witnessed for both between time bins and frequency bins. Entanglement distribution of such high dimensional entangled state is verified with high quality and provides a testbed for high-dimensional quantum key distribution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42005-023-01370-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4632-8477</orcidid><orcidid>https://orcid.org/0000-0001-8172-7081</orcidid><orcidid>https://orcid.org/0000-0002-6094-5861</orcidid><orcidid>https://orcid.org/0000-0003-3800-7980</orcidid><orcidid>https://orcid.org/0000-0002-8262-9720</orcidid><orcidid>https://orcid.org/0000-0002-8141-391X</orcidid><orcidid>https://orcid.org/0000-0001-7652-7720</orcidid><orcidid>https://orcid.org/0000-0002-2562-0009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3650 |
ispartof | Communications physics, 2023-09, Vol.6 (1), p.278-12, Article 278 |
issn | 2399-3650 2399-3650 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d2893bb7cca646e7a4fbaabeefb1153d |
source | Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database |
subjects | 639/766/400/3925 639/766/483 Bins Data processing Electrons Entangled states Fabry-Perot interferometers Fault tolerance Information processing Physics Physics and Astronomy Quantum computing Quantum cryptography Quantum entanglement Quantum phenomena |
title | High-dimensional time-frequency entanglement in a singly-filtered biphoton frequency comb |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-dimensional%20time-frequency%20entanglement%20in%20a%20singly-filtered%20biphoton%20frequency%20comb&rft.jtitle=Communications%20physics&rft.au=Cheng,%20Xiang&rft.date=2023-09-28&rft.volume=6&rft.issue=1&rft.spage=278&rft.epage=12&rft.pages=278-12&rft.artnum=278&rft.issn=2399-3650&rft.eissn=2399-3650&rft_id=info:doi/10.1038/s42005-023-01370-2&rft_dat=%3Cproquest_doaj_%3E2869807391%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-71c68110f233bc6a341e9ec0beea13231fcce5cd30d1dbb39f6ef08c30fb41c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869807391&rft_id=info:pmid/&rfr_iscdi=true |