Loading…
Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network
High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals i...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-02, Vol.22 (4), p.1522 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03 |
container_end_page | |
container_issue | 4 |
container_start_page | 1522 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Gao, Peng Lee, Hyeonseung Jeon, Chan-Woo Yun, Changho Kim, Hak-Jin Wang, Weixing Liang, Gaotian Chen, Yufeng Zhang, Zhao Han, Xiongzhe |
description | High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance. |
doi_str_mv | 10.3390/s22041522 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0</doaj_id><sourcerecordid>2633331925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</originalsourceid><addsrcrecordid>eNpdkktv1DAQgCMEoqVw4A8gS1zgsNTxI7EvSEvVx0p9INS75TiTrZcks7WdIk78dby7ZdVy8mjm86cZe4rifUm_cK7pcWSMilIy9qI4LAUTM5UTL5_EB8WbGFeUMs65el0ccMlKIVh9WPxZDOuAD9CS7xh98jiS05j8YLfhvF9i8OluINiR-TJ4N_VpCrYnV9j4HsgPbDBF8s3GbMgXrnLdRxgjBnI2xY3Dji2ZTwlhdNhCINewFVxD-oXh59viVWf7CO8ez6Pi9uz09uRidnlzvjiZX86cqHSaCd0KUNY5sGAVU1QJ3jRSQlVpRhumSgmupVVdWwBnq05xqDlzthONtpQfFYudtkW7MuuQBwy_DVpvtgkMS2ND8q4H0zJrGRfAqoqLrpFZQbVqtQIKEpqN6-vOtZ6aAVoHY8oDPZM-r4z-zizxwShVS16xLPj0KAh4P0FMZvDRQd_bEXCKhlX5l6TQtc7ox__QFU5hzC-1pTgvNZOZ-ryjXMAYA3T7ZkpqNhti9huS2Q9Pu9-T_1aC_wWpG7jI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633331925</pqid></control><display><type>article</type><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</creator><creatorcontrib>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</creatorcontrib><description>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22041522</identifier><identifier>PMID: 35214427</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; agricultural mobile robots (AMRs) ; Agriculture ; Algorithms ; autoencoder neural network ; Biomechanical Phenomena ; Equations of state ; Extended Kalman filter ; global navigation satellite system (GNSS) ; Global positioning systems ; GPS ; inertial measurement unit (IMU) ; Kalman filter (KF) ; Kalman filters ; Multisensor fusion ; Neural networks ; Neural Networks, Computer ; Noise ; Noise measurement ; Radial basis function ; Robotics ; Robots ; Sensors ; Shaft encoders ; Statistical analysis ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1522</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</citedby><cites>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</cites><orcidid>0000-0002-2729-1165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633331925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633331925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35214427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lee, Hyeonseung</creatorcontrib><creatorcontrib>Jeon, Chan-Woo</creatorcontrib><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Kim, Hak-Jin</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liang, Gaotian</creatorcontrib><creatorcontrib>Chen, Yufeng</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Han, Xiongzhe</creatorcontrib><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</description><subject>Accuracy</subject><subject>agricultural mobile robots (AMRs)</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>autoencoder neural network</subject><subject>Biomechanical Phenomena</subject><subject>Equations of state</subject><subject>Extended Kalman filter</subject><subject>global navigation satellite system (GNSS)</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>inertial measurement unit (IMU)</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>Multisensor fusion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Radial basis function</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Shaft encoders</subject><subject>Statistical analysis</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAQgCMEoqVw4A8gS1zgsNTxI7EvSEvVx0p9INS75TiTrZcks7WdIk78dby7ZdVy8mjm86cZe4rifUm_cK7pcWSMilIy9qI4LAUTM5UTL5_EB8WbGFeUMs65el0ccMlKIVh9WPxZDOuAD9CS7xh98jiS05j8YLfhvF9i8OluINiR-TJ4N_VpCrYnV9j4HsgPbDBF8s3GbMgXrnLdRxgjBnI2xY3Dji2ZTwlhdNhCINewFVxD-oXh59viVWf7CO8ez6Pi9uz09uRidnlzvjiZX86cqHSaCd0KUNY5sGAVU1QJ3jRSQlVpRhumSgmupVVdWwBnq05xqDlzthONtpQfFYudtkW7MuuQBwy_DVpvtgkMS2ND8q4H0zJrGRfAqoqLrpFZQbVqtQIKEpqN6-vOtZ6aAVoHY8oDPZM-r4z-zizxwShVS16xLPj0KAh4P0FMZvDRQd_bEXCKhlX5l6TQtc7ox__QFU5hzC-1pTgvNZOZ-ryjXMAYA3T7ZkpqNhti9huS2Q9Pu9-T_1aC_wWpG7jI</recordid><startdate>20220216</startdate><enddate>20220216</enddate><creator>Gao, Peng</creator><creator>Lee, Hyeonseung</creator><creator>Jeon, Chan-Woo</creator><creator>Yun, Changho</creator><creator>Kim, Hak-Jin</creator><creator>Wang, Weixing</creator><creator>Liang, Gaotian</creator><creator>Chen, Yufeng</creator><creator>Zhang, Zhao</creator><creator>Han, Xiongzhe</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2729-1165</orcidid></search><sort><creationdate>20220216</creationdate><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><author>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>agricultural mobile robots (AMRs)</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>autoencoder neural network</topic><topic>Biomechanical Phenomena</topic><topic>Equations of state</topic><topic>Extended Kalman filter</topic><topic>global navigation satellite system (GNSS)</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>inertial measurement unit (IMU)</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>Multisensor fusion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Radial basis function</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Shaft encoders</topic><topic>Statistical analysis</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lee, Hyeonseung</creatorcontrib><creatorcontrib>Jeon, Chan-Woo</creatorcontrib><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Kim, Hak-Jin</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liang, Gaotian</creatorcontrib><creatorcontrib>Chen, Yufeng</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Han, Xiongzhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Lee, Hyeonseung</au><au>Jeon, Chan-Woo</au><au>Yun, Changho</au><au>Kim, Hak-Jin</au><au>Wang, Weixing</au><au>Liang, Gaotian</au><au>Chen, Yufeng</au><au>Zhang, Zhao</au><au>Han, Xiongzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-02-16</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>1522</spage><pages>1522-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35214427</pmid><doi>10.3390/s22041522</doi><orcidid>https://orcid.org/0000-0002-2729-1165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1522 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy agricultural mobile robots (AMRs) Agriculture Algorithms autoencoder neural network Biomechanical Phenomena Equations of state Extended Kalman filter global navigation satellite system (GNSS) Global positioning systems GPS inertial measurement unit (IMU) Kalman filter (KF) Kalman filters Multisensor fusion Neural networks Neural Networks, Computer Noise Noise measurement Radial basis function Robotics Robots Sensors Shaft encoders Statistical analysis Vision systems |
title | Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Position%20Estimation%20Algorithm%20of%20Agricultural%20Mobile%20Robots%20Based%20on%20Multisensor%20Fusion%20and%20Autoencoder%20Neural%20Network&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Gao,%20Peng&rft.date=2022-02-16&rft.volume=22&rft.issue=4&rft.spage=1522&rft.pages=1522-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22041522&rft_dat=%3Cproquest_doaj_%3E2633331925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633331925&rft_id=info:pmid/35214427&rfr_iscdi=true |