Loading…

Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network

High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals i...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-02, Vol.22 (4), p.1522
Main Authors: Gao, Peng, Lee, Hyeonseung, Jeon, Chan-Woo, Yun, Changho, Kim, Hak-Jin, Wang, Weixing, Liang, Gaotian, Chen, Yufeng, Zhang, Zhao, Han, Xiongzhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03
cites cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03
container_end_page
container_issue 4
container_start_page 1522
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Gao, Peng
Lee, Hyeonseung
Jeon, Chan-Woo
Yun, Changho
Kim, Hak-Jin
Wang, Weixing
Liang, Gaotian
Chen, Yufeng
Zhang, Zhao
Han, Xiongzhe
description High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.
doi_str_mv 10.3390/s22041522
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0</doaj_id><sourcerecordid>2633331925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</originalsourceid><addsrcrecordid>eNpdkktv1DAQgCMEoqVw4A8gS1zgsNTxI7EvSEvVx0p9INS75TiTrZcks7WdIk78dby7ZdVy8mjm86cZe4rifUm_cK7pcWSMilIy9qI4LAUTM5UTL5_EB8WbGFeUMs65el0ccMlKIVh9WPxZDOuAD9CS7xh98jiS05j8YLfhvF9i8OluINiR-TJ4N_VpCrYnV9j4HsgPbDBF8s3GbMgXrnLdRxgjBnI2xY3Dji2ZTwlhdNhCINewFVxD-oXh59viVWf7CO8ez6Pi9uz09uRidnlzvjiZX86cqHSaCd0KUNY5sGAVU1QJ3jRSQlVpRhumSgmupVVdWwBnq05xqDlzthONtpQfFYudtkW7MuuQBwy_DVpvtgkMS2ND8q4H0zJrGRfAqoqLrpFZQbVqtQIKEpqN6-vOtZ6aAVoHY8oDPZM-r4z-zizxwShVS16xLPj0KAh4P0FMZvDRQd_bEXCKhlX5l6TQtc7ox__QFU5hzC-1pTgvNZOZ-ryjXMAYA3T7ZkpqNhti9huS2Q9Pu9-T_1aC_wWpG7jI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633331925</pqid></control><display><type>article</type><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</creator><creatorcontrib>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</creatorcontrib><description>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22041522</identifier><identifier>PMID: 35214427</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; agricultural mobile robots (AMRs) ; Agriculture ; Algorithms ; autoencoder neural network ; Biomechanical Phenomena ; Equations of state ; Extended Kalman filter ; global navigation satellite system (GNSS) ; Global positioning systems ; GPS ; inertial measurement unit (IMU) ; Kalman filter (KF) ; Kalman filters ; Multisensor fusion ; Neural networks ; Neural Networks, Computer ; Noise ; Noise measurement ; Radial basis function ; Robotics ; Robots ; Sensors ; Shaft encoders ; Statistical analysis ; Vision systems</subject><ispartof>Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1522</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</citedby><cites>FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</cites><orcidid>0000-0002-2729-1165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633331925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633331925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35214427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lee, Hyeonseung</creatorcontrib><creatorcontrib>Jeon, Chan-Woo</creatorcontrib><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Kim, Hak-Jin</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liang, Gaotian</creatorcontrib><creatorcontrib>Chen, Yufeng</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Han, Xiongzhe</creatorcontrib><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</description><subject>Accuracy</subject><subject>agricultural mobile robots (AMRs)</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>autoencoder neural network</subject><subject>Biomechanical Phenomena</subject><subject>Equations of state</subject><subject>Extended Kalman filter</subject><subject>global navigation satellite system (GNSS)</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>inertial measurement unit (IMU)</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>Multisensor fusion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Radial basis function</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Shaft encoders</subject><subject>Statistical analysis</subject><subject>Vision systems</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAQgCMEoqVw4A8gS1zgsNTxI7EvSEvVx0p9INS75TiTrZcks7WdIk78dby7ZdVy8mjm86cZe4rifUm_cK7pcWSMilIy9qI4LAUTM5UTL5_EB8WbGFeUMs65el0ccMlKIVh9WPxZDOuAD9CS7xh98jiS05j8YLfhvF9i8OluINiR-TJ4N_VpCrYnV9j4HsgPbDBF8s3GbMgXrnLdRxgjBnI2xY3Dji2ZTwlhdNhCINewFVxD-oXh59viVWf7CO8ez6Pi9uz09uRidnlzvjiZX86cqHSaCd0KUNY5sGAVU1QJ3jRSQlVpRhumSgmupVVdWwBnq05xqDlzthONtpQfFYudtkW7MuuQBwy_DVpvtgkMS2ND8q4H0zJrGRfAqoqLrpFZQbVqtQIKEpqN6-vOtZ6aAVoHY8oDPZM-r4z-zizxwShVS16xLPj0KAh4P0FMZvDRQd_bEXCKhlX5l6TQtc7ox__QFU5hzC-1pTgvNZOZ-ryjXMAYA3T7ZkpqNhti9huS2Q9Pu9-T_1aC_wWpG7jI</recordid><startdate>20220216</startdate><enddate>20220216</enddate><creator>Gao, Peng</creator><creator>Lee, Hyeonseung</creator><creator>Jeon, Chan-Woo</creator><creator>Yun, Changho</creator><creator>Kim, Hak-Jin</creator><creator>Wang, Weixing</creator><creator>Liang, Gaotian</creator><creator>Chen, Yufeng</creator><creator>Zhang, Zhao</creator><creator>Han, Xiongzhe</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2729-1165</orcidid></search><sort><creationdate>20220216</creationdate><title>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</title><author>Gao, Peng ; Lee, Hyeonseung ; Jeon, Chan-Woo ; Yun, Changho ; Kim, Hak-Jin ; Wang, Weixing ; Liang, Gaotian ; Chen, Yufeng ; Zhang, Zhao ; Han, Xiongzhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>agricultural mobile robots (AMRs)</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>autoencoder neural network</topic><topic>Biomechanical Phenomena</topic><topic>Equations of state</topic><topic>Extended Kalman filter</topic><topic>global navigation satellite system (GNSS)</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>inertial measurement unit (IMU)</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>Multisensor fusion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Radial basis function</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Shaft encoders</topic><topic>Statistical analysis</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Lee, Hyeonseung</creatorcontrib><creatorcontrib>Jeon, Chan-Woo</creatorcontrib><creatorcontrib>Yun, Changho</creatorcontrib><creatorcontrib>Kim, Hak-Jin</creatorcontrib><creatorcontrib>Wang, Weixing</creatorcontrib><creatorcontrib>Liang, Gaotian</creatorcontrib><creatorcontrib>Chen, Yufeng</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Han, Xiongzhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Lee, Hyeonseung</au><au>Jeon, Chan-Woo</au><au>Yun, Changho</au><au>Kim, Hak-Jin</au><au>Wang, Weixing</au><au>Liang, Gaotian</au><au>Chen, Yufeng</au><au>Zhang, Zhao</au><au>Han, Xiongzhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-02-16</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>1522</spage><pages>1522-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>High-precision position estimations of agricultural mobile robots (AMRs) are crucial for implementing control instructions. Although the global navigation satellite system (GNSS) and real-time kinematic GNSS (RTK-GNSS) provide high-precision positioning, the AMR accuracy decreases when the signals interfere with buildings or trees. An improved position estimation algorithm based on multisensor fusion and autoencoder neural network is proposed. The multisensor, RTK-GNSS, inertial-measurement-unit, and dual-rotary-encoder data are fused with Extended Kalman filter (EKF). To optimize the EKF noise matrix, the autoencoder and radial basis function (ARBF) neural network was used for modeling the state equation noise and EKF measurement equation. A multisensor AMR test platform was constructed for static experiments to estimate the circular error probability and twice-the-distance root-mean-squared criteria. Dynamic experiments were conducted on road, grass, and field environments. To validate the robustness of the proposed algorithm, abnormal working conditions of the sensors were tested on the road. The results showed that the positioning estimation accuracy was improved compared to the RTK-GNSS in all three environments. When the RTK-GNSS signal experienced interference or rotary encoders failed, the system could still improve the position estimation accuracy. The proposed system and optimization algorithm are thus significant for improving AMR position prediction performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35214427</pmid><doi>10.3390/s22041522</doi><orcidid>https://orcid.org/0000-0002-2729-1165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1522
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d2aa234e26634fb5af4098d98e0e5eb0
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
agricultural mobile robots (AMRs)
Agriculture
Algorithms
autoencoder neural network
Biomechanical Phenomena
Equations of state
Extended Kalman filter
global navigation satellite system (GNSS)
Global positioning systems
GPS
inertial measurement unit (IMU)
Kalman filter (KF)
Kalman filters
Multisensor fusion
Neural networks
Neural Networks, Computer
Noise
Noise measurement
Radial basis function
Robotics
Robots
Sensors
Shaft encoders
Statistical analysis
Vision systems
title Improved Position Estimation Algorithm of Agricultural Mobile Robots Based on Multisensor Fusion and Autoencoder Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Position%20Estimation%20Algorithm%20of%20Agricultural%20Mobile%20Robots%20Based%20on%20Multisensor%20Fusion%20and%20Autoencoder%20Neural%20Network&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Gao,%20Peng&rft.date=2022-02-16&rft.volume=22&rft.issue=4&rft.spage=1522&rft.pages=1522-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22041522&rft_dat=%3Cproquest_doaj_%3E2633331925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-49d4e8acceaea8280843bb55e66920b2815ecd0677aeeca6f83e732caf4b9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633331925&rft_id=info:pmid/35214427&rfr_iscdi=true