Loading…
100 GHz Silicon-based micro-machined patch antenna and arrays
This study designs a micro-machined BCB-cavity patch antenna and two types of four-element micro-machined antenna arrays at 100 GHz. The patches are fabricated on Benzocyclobutene (BCB) polymer material. The silicon substrate is selective lateral etched under the patch antenna to fabricate a cavity...
Saved in:
Published in: | Journal of engineering (Stevenage, England) England), 2019-10, Vol.2019 (19), p.5622-5625 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173 |
---|---|
cites | cdi_FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173 |
container_end_page | 5625 |
container_issue | 19 |
container_start_page | 5622 |
container_title | Journal of engineering (Stevenage, England) |
container_volume | 2019 |
creator | Liu, Jingtian Chen, Shuming Xiao, Ke Chen, Xiaowen |
description | This study designs a micro-machined BCB-cavity patch antenna and two types of four-element micro-machined antenna arrays at 100 GHz. The patches are fabricated on Benzocyclobutene (BCB) polymer material. The silicon substrate is selective lateral etched under the patch antenna to fabricate a cavity surrounded by metal and filled with BCB material. The BCB-cavity under patches can reduce the excitation of surface waves and enhance the radiation on performance. A single large BCB-cavity is designed to implement the four-element antenna arrays under the consideration of mutual coupling. The proposed single antenna has a 2.8 GHz impedance bandwidth. At 100 GHz, the simulated maximum gain is 6.7 dBi for the single antenna and 13 dBi for the four-element antenna arrays. |
doi_str_mv | 10.1049/joe.2019.0241 |
format | article |
fullrecord | <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d2e952a4320a4f9897b486ab7c0f3d44</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d2e952a4320a4f9897b486ab7c0f3d44</doaj_id><sourcerecordid>TJE2BF02182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173</originalsourceid><addsrcrecordid>eNp9kLtOAkEUhjdGEwlS2tNYWCzOmQs7WxklXENCIdaTM5eVIbBLZjEGKxtf1CdxEGMo1Opc8p1_Ml-SXALpAOH5zbJyHUog7xDK4SRpUCIgZYyI06P-PGnV9ZIQAoxTwqGR3AIhH2_vw9Fr-8GvvKnKVGPtbHvtTajSNZqFL-O4wa1ZtLHcurLEWG0bQ8BdfZGcFbiqXeu7NpPHQX_eG6XT2XDcu5umhuaSphlj0upCoBDMCWE1Be201FLkYJlgyBAkmNiBzphAUwiALGeOS-RdyFgzGR9ybYVLtQl-jWGnKvTqa1GFJ4Vh683KKUtdLihyRgnyIpd5prnsos4MKZjlPGalh6z4w7oOrvjJA6L2MlWUqfYy1V5m5LsH_sWv3O5_WM0nfXo_IBQkjYfXh0PvthF7DmVU9OcjV7-wk1n_KHtjC_YJ5xGPFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>100 GHz Silicon-based micro-machined patch antenna and arrays</title><source>IET Digital Library</source><source>Wiley-Blackwell Open Access Titles</source><creator>Liu, Jingtian ; Chen, Shuming ; Xiao, Ke ; Chen, Xiaowen</creator><creatorcontrib>Liu, Jingtian ; Chen, Shuming ; Xiao, Ke ; Chen, Xiaowen</creatorcontrib><description>This study designs a micro-machined BCB-cavity patch antenna and two types of four-element micro-machined antenna arrays at 100 GHz. The patches are fabricated on Benzocyclobutene (BCB) polymer material. The silicon substrate is selective lateral etched under the patch antenna to fabricate a cavity surrounded by metal and filled with BCB material. The BCB-cavity under patches can reduce the excitation of surface waves and enhance the radiation on performance. A single large BCB-cavity is designed to implement the four-element antenna arrays under the consideration of mutual coupling. The proposed single antenna has a 2.8 GHz impedance bandwidth. At 100 GHz, the simulated maximum gain is 6.7 dBi for the single antenna and 13 dBi for the four-element antenna arrays.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2019.0241</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>100 GHz Silicon-based micromachined patch antenna ; 100 GHz Silicon‐based micromachined patch antenna ; 2.8 GHz impedance bandwidth ; 2.8 GHz impedance bandwidth ; antenna arrays ; antenna feeds ; antenna radiation patterns ; BCB material ; Benzocyclobutene polymer material ; etching ; four-element antenna arrays ; frequency 100.0 GHz ; frequency 100.0 GHz ; frequency 2.8 GHz ; frequency 2.8 GHz ; IET International Radar Conference (IRC 2018) ; micromachined BCB-cavity patch antenna ; micromachining ; microstrip antennas ; millimetre wave antennas ; patches ; silicon ; silicon substrate ; single antenna</subject><ispartof>Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (19), p.5622-5625</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173</citedby><cites>FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2019.0241$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2019.0241$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,9755,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Liu, Jingtian</creatorcontrib><creatorcontrib>Chen, Shuming</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Chen, Xiaowen</creatorcontrib><title>100 GHz Silicon-based micro-machined patch antenna and arrays</title><title>Journal of engineering (Stevenage, England)</title><description>This study designs a micro-machined BCB-cavity patch antenna and two types of four-element micro-machined antenna arrays at 100 GHz. The patches are fabricated on Benzocyclobutene (BCB) polymer material. The silicon substrate is selective lateral etched under the patch antenna to fabricate a cavity surrounded by metal and filled with BCB material. The BCB-cavity under patches can reduce the excitation of surface waves and enhance the radiation on performance. A single large BCB-cavity is designed to implement the four-element antenna arrays under the consideration of mutual coupling. The proposed single antenna has a 2.8 GHz impedance bandwidth. At 100 GHz, the simulated maximum gain is 6.7 dBi for the single antenna and 13 dBi for the four-element antenna arrays.</description><subject>100 GHz Silicon-based micromachined patch antenna</subject><subject>100 GHz Silicon‐based micromachined patch antenna</subject><subject>2.8 GHz impedance bandwidth</subject><subject>2.8 GHz impedance bandwidth</subject><subject>antenna arrays</subject><subject>antenna feeds</subject><subject>antenna radiation patterns</subject><subject>BCB material</subject><subject>Benzocyclobutene polymer material</subject><subject>etching</subject><subject>four-element antenna arrays</subject><subject>frequency 100.0 GHz</subject><subject>frequency 100.0 GHz</subject><subject>frequency 2.8 GHz</subject><subject>frequency 2.8 GHz</subject><subject>IET International Radar Conference (IRC 2018)</subject><subject>micromachined BCB-cavity patch antenna</subject><subject>micromachining</subject><subject>microstrip antennas</subject><subject>millimetre wave antennas</subject><subject>patches</subject><subject>silicon</subject><subject>silicon substrate</subject><subject>single antenna</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kLtOAkEUhjdGEwlS2tNYWCzOmQs7WxklXENCIdaTM5eVIbBLZjEGKxtf1CdxEGMo1Opc8p1_Ml-SXALpAOH5zbJyHUog7xDK4SRpUCIgZYyI06P-PGnV9ZIQAoxTwqGR3AIhH2_vw9Fr-8GvvKnKVGPtbHvtTajSNZqFL-O4wa1ZtLHcurLEWG0bQ8BdfZGcFbiqXeu7NpPHQX_eG6XT2XDcu5umhuaSphlj0upCoBDMCWE1Be201FLkYJlgyBAkmNiBzphAUwiALGeOS-RdyFgzGR9ybYVLtQl-jWGnKvTqa1GFJ4Vh683KKUtdLihyRgnyIpd5prnsos4MKZjlPGalh6z4w7oOrvjJA6L2MlWUqfYy1V5m5LsH_sWv3O5_WM0nfXo_IBQkjYfXh0PvthF7DmVU9OcjV7-wk1n_KHtjC_YJ5xGPFg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Liu, Jingtian</creator><creator>Chen, Shuming</creator><creator>Xiao, Ke</creator><creator>Chen, Xiaowen</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201910</creationdate><title>100 GHz Silicon-based micro-machined patch antenna and arrays</title><author>Liu, Jingtian ; Chen, Shuming ; Xiao, Ke ; Chen, Xiaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>100 GHz Silicon-based micromachined patch antenna</topic><topic>100 GHz Silicon‐based micromachined patch antenna</topic><topic>2.8 GHz impedance bandwidth</topic><topic>2.8 GHz impedance bandwidth</topic><topic>antenna arrays</topic><topic>antenna feeds</topic><topic>antenna radiation patterns</topic><topic>BCB material</topic><topic>Benzocyclobutene polymer material</topic><topic>etching</topic><topic>four-element antenna arrays</topic><topic>frequency 100.0 GHz</topic><topic>frequency 100.0 GHz</topic><topic>frequency 2.8 GHz</topic><topic>frequency 2.8 GHz</topic><topic>IET International Radar Conference (IRC 2018)</topic><topic>micromachined BCB-cavity patch antenna</topic><topic>micromachining</topic><topic>microstrip antennas</topic><topic>millimetre wave antennas</topic><topic>patches</topic><topic>silicon</topic><topic>silicon substrate</topic><topic>single antenna</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingtian</creatorcontrib><creatorcontrib>Chen, Shuming</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Chen, Xiaowen</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingtian</au><au>Chen, Shuming</au><au>Xiao, Ke</au><au>Chen, Xiaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>100 GHz Silicon-based micro-machined patch antenna and arrays</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-10</date><risdate>2019</risdate><volume>2019</volume><issue>19</issue><spage>5622</spage><epage>5625</epage><pages>5622-5625</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>This study designs a micro-machined BCB-cavity patch antenna and two types of four-element micro-machined antenna arrays at 100 GHz. The patches are fabricated on Benzocyclobutene (BCB) polymer material. The silicon substrate is selective lateral etched under the patch antenna to fabricate a cavity surrounded by metal and filled with BCB material. The BCB-cavity under patches can reduce the excitation of surface waves and enhance the radiation on performance. A single large BCB-cavity is designed to implement the four-element antenna arrays under the consideration of mutual coupling. The proposed single antenna has a 2.8 GHz impedance bandwidth. At 100 GHz, the simulated maximum gain is 6.7 dBi for the single antenna and 13 dBi for the four-element antenna arrays.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2019.0241</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-3305 |
ispartof | Journal of engineering (Stevenage, England), 2019-10, Vol.2019 (19), p.5622-5625 |
issn | 2051-3305 2051-3305 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d2e952a4320a4f9897b486ab7c0f3d44 |
source | IET Digital Library; Wiley-Blackwell Open Access Titles |
subjects | 100 GHz Silicon-based micromachined patch antenna 100 GHz Silicon‐based micromachined patch antenna 2.8 GHz impedance bandwidth 2.8 GHz impedance bandwidth antenna arrays antenna feeds antenna radiation patterns BCB material Benzocyclobutene polymer material etching four-element antenna arrays frequency 100.0 GHz frequency 100.0 GHz frequency 2.8 GHz frequency 2.8 GHz IET International Radar Conference (IRC 2018) micromachined BCB-cavity patch antenna micromachining microstrip antennas millimetre wave antennas patches silicon silicon substrate single antenna |
title | 100 GHz Silicon-based micro-machined patch antenna and arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=100%E2%80%85GHz%20Silicon-based%20micro-machined%20patch%20antenna%20and%20arrays&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Liu,%20Jingtian&rft.date=2019-10&rft.volume=2019&rft.issue=19&rft.spage=5622&rft.epage=5625&rft.pages=5622-5625&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2019.0241&rft_dat=%3Cwiley_doaj_%3ETJE2BF02182%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2982-7338dbf5a553e55db21beb8b8591d353a3a181c3531b735acf511793e48a46173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |