Loading…

Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors

The structural properties of phosphor materials, such as their grain size distribution (GSD), affect their overall optical emission performance. In the widely used gadolinium oxysulfide (Gd2O2S) host material, the type of activator is one significant parameter that also changes the GSD of the powder...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (22), p.8702
Main Authors: Liaparinos, Panagiotis, Michail, Christos, Valais, Ioannis, Fountos, George, Karabotsos, Athanasios, Kandarakis, Ioannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural properties of phosphor materials, such as their grain size distribution (GSD), affect their overall optical emission performance. In the widely used gadolinium oxysulfide (Gd2O2S) host material, the type of activator is one significant parameter that also changes the GSD of the powder phosphor. For this reason, in this study, different phosphors samples of Gd2O2S:Tb, Gd2O2S:Eu, and Gd2O2S:Pr,Ce,F, were analyzed, their GSDs were experimentally determined using the scanning electron microscopy (SEM) technique, and thereafter, their optical emission profiles were investigated using the LIGHTAWE Monte Carlo simulation package. Two sets of GSDs were examined corresponding to approximately equal mean particle size, such as: (i) 1.232 μm, 1.769 μm and 1.784 μm, and (ii) 2.377 μm, 3.644 μm and 3.677 μm, for Tb, Eu and Pr,Ce,F, respectively. The results showed that light absorption was almost similar, for instance, 25.45% and 8.17% for both cases of Eu dopant utilizing a thin layer (100 μm), however, given a thicker layer (200 μm), the difference was more obvious, 22.82%. On the other hand, a high amount of light loss within the phosphor affects the laterally directed light quanta, which lead to sharper distributions and therefore to higher resolution properties of the samples.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22228702