Loading…

RNA ligase ribozymes with a small catalytic core

Catalytic RNAs, or ribozymes, catalyze diverse chemical reactions that could have sustained primordial life in the hypothetical RNA world. Many natural ribozymes and laboratory evolved ribozymes exhibit efficient catalysis mediated by elaborate catalytic cores within complex tertiary structures. How...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-05, Vol.13 (1), p.8584-8584, Article 8584
Main Authors: Nomura, Yoko, Yokobayashi, Yohei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Catalytic RNAs, or ribozymes, catalyze diverse chemical reactions that could have sustained primordial life in the hypothetical RNA world. Many natural ribozymes and laboratory evolved ribozymes exhibit efficient catalysis mediated by elaborate catalytic cores within complex tertiary structures. However, such complex RNA structures and sequences are unlikely to have emerged by chance during the earliest phase of chemical evolution. Here, we explored simple and small ribozyme motifs capable of ligating two RNA fragments in a template-directed fashion (ligase ribozymes). One-round selection of small ligase ribozymes followed by deep sequencing revealed a ligase ribozyme motif comprising a three-nucleotide loop opposite to the ligation junction. The observed ligation was magnesium(II) dependent and appears to form a 2′–5′ phosphodiester linkage. The fact that such a small RNA motif can function as a catalyst supports a scenario in which RNA or other primordial nucleic acids played a central role in chemical evolution of life.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-35584-9