Loading…
A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2
The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-re...
Saved in:
Published in: | AppliedMath 2024-06, Vol.4 (2), p.468-494 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-3a0145d3de162fb4fae2a81a626d219c18afe95b4b44dff424539b064bffb6df3 |
container_end_page | 494 |
container_issue | 2 |
container_start_page | 468 |
container_title | AppliedMath |
container_volume | 4 |
creator | Ellerman, David |
description | The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-relativistic) QM. The 0,1-vectors are interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets version of that experiment is used to make the key points. |
doi_str_mv | 10.3390/appliedmath4020025 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d33eef286f164ab0bcb6257207747fd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d33eef286f164ab0bcb6257207747fd2</doaj_id><sourcerecordid>oai_doaj_org_article_d33eef286f164ab0bcb6257207747fd2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-3a0145d3de162fb4fae2a81a626d219c18afe95b4b44dff424539b064bffb6df3</originalsourceid><addsrcrecordid>eNplkMtKw0AYhQdRsNS-gKt5gercMkncleKl0HoBuw7_3NKUNBNmpop7H8Un80lsrYjg6hwOH9_iIHROyQXnJbmEvm8bazaQVoIwQlh2hAZM5nxclqQ8_tNP0SjGNdkhRZbzvBggNcH39hVP-j540CucPF52xoaYoDNNV-OnLXRpu8ELq1fQNTpe4VnbbmMKkKzBy7iHAD9aA7WvGw0tXnhjW-xfbMCf7x_sDJ04aKMd_eQQLW-un6d34_nD7Ww6mY8140UacyBUZIYbSyVzSjiwDAoKkknDaKlpAc6WmRJKCOOcYCLjpSJSKOeUNI4P0ezgNR7WVR-aDYS3ykNTfQ8-1BWE1OjWVoZzax0rpKNSgCJKK8mynJE8F7kzbOdiB5cOPsZg3a-Pkmp_evX_dP4FlqV5pQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2</title><source>DOAJ Directory of Open Access Journals</source><creator>Ellerman, David</creator><creatorcontrib>Ellerman, David</creatorcontrib><description>The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-relativistic) QM. The 0,1-vectors are interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets version of that experiment is used to make the key points.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4020025</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>equivalence relations ; indistinguishability ; mathematics of quantum mechanics ; objective indefiniteness ; partitions ; vector spaces over ℤ2</subject><ispartof>AppliedMath, 2024-06, Vol.4 (2), p.468-494</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-3a0145d3de162fb4fae2a81a626d219c18afe95b4b44dff424539b064bffb6df3</cites><orcidid>0000-0002-5718-618X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ellerman, David</creatorcontrib><title>A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2</title><title>AppliedMath</title><description>The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-relativistic) QM. The 0,1-vectors are interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets version of that experiment is used to make the key points.</description><subject>equivalence relations</subject><subject>indistinguishability</subject><subject>mathematics of quantum mechanics</subject><subject>objective indefiniteness</subject><subject>partitions</subject><subject>vector spaces over ℤ2</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkMtKw0AYhQdRsNS-gKt5gercMkncleKl0HoBuw7_3NKUNBNmpop7H8Un80lsrYjg6hwOH9_iIHROyQXnJbmEvm8bazaQVoIwQlh2hAZM5nxclqQ8_tNP0SjGNdkhRZbzvBggNcH39hVP-j540CucPF52xoaYoDNNV-OnLXRpu8ELq1fQNTpe4VnbbmMKkKzBy7iHAD9aA7WvGw0tXnhjW-xfbMCf7x_sDJ04aKMd_eQQLW-un6d34_nD7Ww6mY8140UacyBUZIYbSyVzSjiwDAoKkknDaKlpAc6WmRJKCOOcYCLjpSJSKOeUNI4P0ezgNR7WVR-aDYS3ykNTfQ8-1BWE1OjWVoZzax0rpKNSgCJKK8mynJE8F7kzbOdiB5cOPsZg3a-Pkmp_evX_dP4FlqV5pQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ellerman, David</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5718-618X</orcidid></search><sort><creationdate>20240601</creationdate><title>A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2</title><author>Ellerman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-3a0145d3de162fb4fae2a81a626d219c18afe95b4b44dff424539b064bffb6df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>equivalence relations</topic><topic>indistinguishability</topic><topic>mathematics of quantum mechanics</topic><topic>objective indefiniteness</topic><topic>partitions</topic><topic>vector spaces over ℤ2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellerman, David</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellerman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2</atitle><jtitle>AppliedMath</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>468</spage><epage>494</epage><pages>468-494</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>The new approach to quantum mechanics (QM) is that the mathematics of QM is the linearization of the mathematics of partitions (or equivalence relations) on a set. This paper develops those ideas using vector spaces over the field Z2={0.1} as a pedagogical or toy model of (finite-dimensional, non-relativistic) QM. The 0,1-vectors are interpreted as sets, so the model is “quantum mechanics over sets” or QM/Sets. The key notions of partitions on a set are the logical-level notions to model distinctions versus indistinctions, definiteness versus indefiniteness, or distinguishability versus indistinguishability. Those pairs of concepts are the key to understanding the non-classical ‘weirdness’ of QM. The key non-classical notion in QM is the notion of superposition, i.e., the notion of a state that is indefinite between two or more definite- or eigen-states. As Richard Feynman emphasized, all the weirdness of QM is illustrated in the double-slit experiment, so the QM/Sets version of that experiment is used to make the key points.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4020025</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-5718-618X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2024-06, Vol.4 (2), p.468-494 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d33eef286f164ab0bcb6257207747fd2 |
source | DOAJ Directory of Open Access Journals |
subjects | equivalence relations indistinguishability mathematics of quantum mechanics objective indefiniteness partitions vector spaces over ℤ2 |
title | A New Approach to Understanding Quantum Mechanics: Illustrated Using a Pedagogical Model over ℤ2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Understanding%20Quantum%20Mechanics:%20Illustrated%20Using%20a%20Pedagogical%20Model%20over%20%E2%84%A42&rft.jtitle=AppliedMath&rft.au=Ellerman,%20David&rft.date=2024-06-01&rft.volume=4&rft.issue=2&rft.spage=468&rft.epage=494&rft.pages=468-494&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4020025&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_d33eef286f164ab0bcb6257207747fd2%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-3a0145d3de162fb4fae2a81a626d219c18afe95b4b44dff424539b064bffb6df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |