Loading…
Nengo: a Python tool for building large-scale functional brain models
Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and...
Saved in:
Published in: | Frontiers in neuroinformatics 2014-01, Vol.7, p.48-48 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33 |
---|---|
cites | |
container_end_page | 48 |
container_issue | |
container_start_page | 48 |
container_title | Frontiers in neuroinformatics |
container_volume | 7 |
creator | Bekolay, Trevor Bergstra, James Hunsberger, Eric Dewolf, Travis Stewart, Terrence C Rasmussen, Daniel Choo, Xuan Voelker, Aaron Russell Eliasmith, Chris |
description | Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results. |
doi_str_mv | 10.3389/fninf.2013.00048 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b</doaj_id><sourcerecordid>2295450875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhgdRbK3ePcmAFy-z5vckHgQpVQtFPeg5fEm-mc6STWoyI_S_d3a3ltZTQt73e0jyNM1rSjaca_N-SFMaNoxQviGECP2kOaVKsU5So54-2J80L2rdEqKYkv3z5oQJwakx5rS5-IZpzB9aaH_cztc5tXPOsR1yad0yxTClsY1QRuyqh4jtsCQ_TzlBbF2BKbW7HDDWl82zAWLFV3frWfPr88XP86_d1fcvl-efrjovpZo7TwRF3TunPEUwTCqGTJsAoPggBNVrIDTFNe2JUY6gcdBT5UJgWiLnZ83lkRsybO1NmXZQbm2GyR4OchktlHnyEW3gwoReggGnBFfBSS0DeMHQA0rhVtbHI-tmcTsMHtNcID6CPk7SdG3H_MdyrYkxegW8uwOU_HvBOtvdVD3GCAnzUi0VhvRSGCPX6tv_qtu8lPUXq2XMSCGJ7vctcmz5kmstONxfhhK7920Pvu3etz34XkfePHzE_cA_wfwvC9OnkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295450875</pqid></control><display><type>article</type><title>Nengo: a Python tool for building large-scale functional brain models</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</creator><creatorcontrib>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</creatorcontrib><description>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</description><identifier>ISSN: 1662-5196</identifier><identifier>EISSN: 1662-5196</identifier><identifier>DOI: 10.3389/fninf.2013.00048</identifier><identifier>PMID: 24431999</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Cognition & reasoning ; Cognitive ability ; Construction ; Control theory ; Engineering ; Memory ; Nef protein ; Nervous system ; neural engineering framework ; Neural networks ; Neurons ; Neuroscience ; Neurosciences ; Principles ; python ; simulation ; theoretical neuroscience</subject><ispartof>Frontiers in neuroinformatics, 2014-01, Vol.7, p.48-48</ispartof><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014 Bekolay, Bergstra, Hunsberger, DeWolf, Stewart, Rasmussen, Choo, Voelker and Eliasmith. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2295450875/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2295450875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24431999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekolay, Trevor</creatorcontrib><creatorcontrib>Bergstra, James</creatorcontrib><creatorcontrib>Hunsberger, Eric</creatorcontrib><creatorcontrib>Dewolf, Travis</creatorcontrib><creatorcontrib>Stewart, Terrence C</creatorcontrib><creatorcontrib>Rasmussen, Daniel</creatorcontrib><creatorcontrib>Choo, Xuan</creatorcontrib><creatorcontrib>Voelker, Aaron Russell</creatorcontrib><creatorcontrib>Eliasmith, Chris</creatorcontrib><title>Nengo: a Python tool for building large-scale functional brain models</title><title>Frontiers in neuroinformatics</title><addtitle>Front Neuroinform</addtitle><description>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</description><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Construction</subject><subject>Control theory</subject><subject>Engineering</subject><subject>Memory</subject><subject>Nef protein</subject><subject>Nervous system</subject><subject>neural engineering framework</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Principles</subject><subject>python</subject><subject>simulation</subject><subject>theoretical neuroscience</subject><issn>1662-5196</issn><issn>1662-5196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEYhgdRbK3ePcmAFy-z5vckHgQpVQtFPeg5fEm-mc6STWoyI_S_d3a3ltZTQt73e0jyNM1rSjaca_N-SFMaNoxQviGECP2kOaVKsU5So54-2J80L2rdEqKYkv3z5oQJwakx5rS5-IZpzB9aaH_cztc5tXPOsR1yad0yxTClsY1QRuyqh4jtsCQ_TzlBbF2BKbW7HDDWl82zAWLFV3frWfPr88XP86_d1fcvl-efrjovpZo7TwRF3TunPEUwTCqGTJsAoPggBNVrIDTFNe2JUY6gcdBT5UJgWiLnZ83lkRsybO1NmXZQbm2GyR4OchktlHnyEW3gwoReggGnBFfBSS0DeMHQA0rhVtbHI-tmcTsMHtNcID6CPk7SdG3H_MdyrYkxegW8uwOU_HvBOtvdVD3GCAnzUi0VhvRSGCPX6tv_qtu8lPUXq2XMSCGJ7vctcmz5kmstONxfhhK7920Pvu3etz34XkfePHzE_cA_wfwvC9OnkQ</recordid><startdate>20140106</startdate><enddate>20140106</enddate><creator>Bekolay, Trevor</creator><creator>Bergstra, James</creator><creator>Hunsberger, Eric</creator><creator>Dewolf, Travis</creator><creator>Stewart, Terrence C</creator><creator>Rasmussen, Daniel</creator><creator>Choo, Xuan</creator><creator>Voelker, Aaron Russell</creator><creator>Eliasmith, Chris</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140106</creationdate><title>Nengo: a Python tool for building large-scale functional brain models</title><author>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Construction</topic><topic>Control theory</topic><topic>Engineering</topic><topic>Memory</topic><topic>Nef protein</topic><topic>Nervous system</topic><topic>neural engineering framework</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Principles</topic><topic>python</topic><topic>simulation</topic><topic>theoretical neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekolay, Trevor</creatorcontrib><creatorcontrib>Bergstra, James</creatorcontrib><creatorcontrib>Hunsberger, Eric</creatorcontrib><creatorcontrib>Dewolf, Travis</creatorcontrib><creatorcontrib>Stewart, Terrence C</creatorcontrib><creatorcontrib>Rasmussen, Daniel</creatorcontrib><creatorcontrib>Choo, Xuan</creatorcontrib><creatorcontrib>Voelker, Aaron Russell</creatorcontrib><creatorcontrib>Eliasmith, Chris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Frontiers in neuroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekolay, Trevor</au><au>Bergstra, James</au><au>Hunsberger, Eric</au><au>Dewolf, Travis</au><au>Stewart, Terrence C</au><au>Rasmussen, Daniel</au><au>Choo, Xuan</au><au>Voelker, Aaron Russell</au><au>Eliasmith, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nengo: a Python tool for building large-scale functional brain models</atitle><jtitle>Frontiers in neuroinformatics</jtitle><addtitle>Front Neuroinform</addtitle><date>2014-01-06</date><risdate>2014</risdate><volume>7</volume><spage>48</spage><epage>48</epage><pages>48-48</pages><issn>1662-5196</issn><eissn>1662-5196</eissn><abstract>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>24431999</pmid><doi>10.3389/fninf.2013.00048</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5196 |
ispartof | Frontiers in neuroinformatics, 2014-01, Vol.7, p.48-48 |
issn | 1662-5196 1662-5196 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Cognition & reasoning Cognitive ability Construction Control theory Engineering Memory Nef protein Nervous system neural engineering framework Neural networks Neurons Neuroscience Neurosciences Principles python simulation theoretical neuroscience |
title | Nengo: a Python tool for building large-scale functional brain models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nengo:%20a%20Python%20tool%20for%20building%20large-scale%20functional%20brain%20models&rft.jtitle=Frontiers%20in%20neuroinformatics&rft.au=Bekolay,%20Trevor&rft.date=2014-01-06&rft.volume=7&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.issn=1662-5196&rft.eissn=1662-5196&rft_id=info:doi/10.3389/fninf.2013.00048&rft_dat=%3Cproquest_doaj_%3E2295450875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295450875&rft_id=info:pmid/24431999&rfr_iscdi=true |