Loading…

Nengo: a Python tool for building large-scale functional brain models

Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics 2014-01, Vol.7, p.48-48
Main Authors: Bekolay, Trevor, Bergstra, James, Hunsberger, Eric, Dewolf, Travis, Stewart, Terrence C, Rasmussen, Daniel, Choo, Xuan, Voelker, Aaron Russell, Eliasmith, Chris
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33
cites
container_end_page 48
container_issue
container_start_page 48
container_title Frontiers in neuroinformatics
container_volume 7
creator Bekolay, Trevor
Bergstra, James
Hunsberger, Eric
Dewolf, Travis
Stewart, Terrence C
Rasmussen, Daniel
Choo, Xuan
Voelker, Aaron Russell
Eliasmith, Chris
description Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.
doi_str_mv 10.3389/fninf.2013.00048
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b</doaj_id><sourcerecordid>2295450875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhgdRbK3ePcmAFy-z5vckHgQpVQtFPeg5fEm-mc6STWoyI_S_d3a3ltZTQt73e0jyNM1rSjaca_N-SFMaNoxQviGECP2kOaVKsU5So54-2J80L2rdEqKYkv3z5oQJwakx5rS5-IZpzB9aaH_cztc5tXPOsR1yad0yxTClsY1QRuyqh4jtsCQ_TzlBbF2BKbW7HDDWl82zAWLFV3frWfPr88XP86_d1fcvl-efrjovpZo7TwRF3TunPEUwTCqGTJsAoPggBNVrIDTFNe2JUY6gcdBT5UJgWiLnZ83lkRsybO1NmXZQbm2GyR4OchktlHnyEW3gwoReggGnBFfBSS0DeMHQA0rhVtbHI-tmcTsMHtNcID6CPk7SdG3H_MdyrYkxegW8uwOU_HvBOtvdVD3GCAnzUi0VhvRSGCPX6tv_qtu8lPUXq2XMSCGJ7vctcmz5kmstONxfhhK7920Pvu3etz34XkfePHzE_cA_wfwvC9OnkQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295450875</pqid></control><display><type>article</type><title>Nengo: a Python tool for building large-scale functional brain models</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</creator><creatorcontrib>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</creatorcontrib><description>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</description><identifier>ISSN: 1662-5196</identifier><identifier>EISSN: 1662-5196</identifier><identifier>DOI: 10.3389/fninf.2013.00048</identifier><identifier>PMID: 24431999</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Cognition &amp; reasoning ; Cognitive ability ; Construction ; Control theory ; Engineering ; Memory ; Nef protein ; Nervous system ; neural engineering framework ; Neural networks ; Neurons ; Neuroscience ; Neurosciences ; Principles ; python ; simulation ; theoretical neuroscience</subject><ispartof>Frontiers in neuroinformatics, 2014-01, Vol.7, p.48-48</ispartof><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2014 Bekolay, Bergstra, Hunsberger, DeWolf, Stewart, Rasmussen, Choo, Voelker and Eliasmith. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2295450875/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2295450875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24431999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bekolay, Trevor</creatorcontrib><creatorcontrib>Bergstra, James</creatorcontrib><creatorcontrib>Hunsberger, Eric</creatorcontrib><creatorcontrib>Dewolf, Travis</creatorcontrib><creatorcontrib>Stewart, Terrence C</creatorcontrib><creatorcontrib>Rasmussen, Daniel</creatorcontrib><creatorcontrib>Choo, Xuan</creatorcontrib><creatorcontrib>Voelker, Aaron Russell</creatorcontrib><creatorcontrib>Eliasmith, Chris</creatorcontrib><title>Nengo: a Python tool for building large-scale functional brain models</title><title>Frontiers in neuroinformatics</title><addtitle>Front Neuroinform</addtitle><description>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</description><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Construction</subject><subject>Control theory</subject><subject>Engineering</subject><subject>Memory</subject><subject>Nef protein</subject><subject>Nervous system</subject><subject>neural engineering framework</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Principles</subject><subject>python</subject><subject>simulation</subject><subject>theoretical neuroscience</subject><issn>1662-5196</issn><issn>1662-5196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEYhgdRbK3ePcmAFy-z5vckHgQpVQtFPeg5fEm-mc6STWoyI_S_d3a3ltZTQt73e0jyNM1rSjaca_N-SFMaNoxQviGECP2kOaVKsU5So54-2J80L2rdEqKYkv3z5oQJwakx5rS5-IZpzB9aaH_cztc5tXPOsR1yad0yxTClsY1QRuyqh4jtsCQ_TzlBbF2BKbW7HDDWl82zAWLFV3frWfPr88XP86_d1fcvl-efrjovpZo7TwRF3TunPEUwTCqGTJsAoPggBNVrIDTFNe2JUY6gcdBT5UJgWiLnZ83lkRsybO1NmXZQbm2GyR4OchktlHnyEW3gwoReggGnBFfBSS0DeMHQA0rhVtbHI-tmcTsMHtNcID6CPk7SdG3H_MdyrYkxegW8uwOU_HvBOtvdVD3GCAnzUi0VhvRSGCPX6tv_qtu8lPUXq2XMSCGJ7vctcmz5kmstONxfhhK7920Pvu3etz34XkfePHzE_cA_wfwvC9OnkQ</recordid><startdate>20140106</startdate><enddate>20140106</enddate><creator>Bekolay, Trevor</creator><creator>Bergstra, James</creator><creator>Hunsberger, Eric</creator><creator>Dewolf, Travis</creator><creator>Stewart, Terrence C</creator><creator>Rasmussen, Daniel</creator><creator>Choo, Xuan</creator><creator>Voelker, Aaron Russell</creator><creator>Eliasmith, Chris</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140106</creationdate><title>Nengo: a Python tool for building large-scale functional brain models</title><author>Bekolay, Trevor ; Bergstra, James ; Hunsberger, Eric ; Dewolf, Travis ; Stewart, Terrence C ; Rasmussen, Daniel ; Choo, Xuan ; Voelker, Aaron Russell ; Eliasmith, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Construction</topic><topic>Control theory</topic><topic>Engineering</topic><topic>Memory</topic><topic>Nef protein</topic><topic>Nervous system</topic><topic>neural engineering framework</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Principles</topic><topic>python</topic><topic>simulation</topic><topic>theoretical neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekolay, Trevor</creatorcontrib><creatorcontrib>Bergstra, James</creatorcontrib><creatorcontrib>Hunsberger, Eric</creatorcontrib><creatorcontrib>Dewolf, Travis</creatorcontrib><creatorcontrib>Stewart, Terrence C</creatorcontrib><creatorcontrib>Rasmussen, Daniel</creatorcontrib><creatorcontrib>Choo, Xuan</creatorcontrib><creatorcontrib>Voelker, Aaron Russell</creatorcontrib><creatorcontrib>Eliasmith, Chris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Frontiers in neuroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekolay, Trevor</au><au>Bergstra, James</au><au>Hunsberger, Eric</au><au>Dewolf, Travis</au><au>Stewart, Terrence C</au><au>Rasmussen, Daniel</au><au>Choo, Xuan</au><au>Voelker, Aaron Russell</au><au>Eliasmith, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nengo: a Python tool for building large-scale functional brain models</atitle><jtitle>Frontiers in neuroinformatics</jtitle><addtitle>Front Neuroinform</addtitle><date>2014-01-06</date><risdate>2014</risdate><volume>7</volume><spage>48</spage><epage>48</epage><pages>48-48</pages><issn>1662-5196</issn><eissn>1662-5196</eissn><abstract>Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build and simulate large-scale models based on the NEF; currently, it is the primary resource for both teaching how the NEF is used, and for doing research that generates specific NEF models to explain experimental data. Nengo 1.4, which was implemented in Java, was used to create Spaun, the world's largest functional brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4's ability to support model construction with simple syntax, to simulate large models quickly, and to collect large amounts of data for subsequent analysis. This paper describes Nengo 2.0, which is implemented in Python and overcomes these limitations. It uses simple and extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster than Nengo 1.4, and has a flexible mechanism for collecting simulation results.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>24431999</pmid><doi>10.3389/fninf.2013.00048</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5196
ispartof Frontiers in neuroinformatics, 2014-01, Vol.7, p.48-48
issn 1662-5196
1662-5196
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d349d75a9ab6436db585dac42ecae54b
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Cognition & reasoning
Cognitive ability
Construction
Control theory
Engineering
Memory
Nef protein
Nervous system
neural engineering framework
Neural networks
Neurons
Neuroscience
Neurosciences
Principles
python
simulation
theoretical neuroscience
title Nengo: a Python tool for building large-scale functional brain models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nengo:%20a%20Python%20tool%20for%20building%20large-scale%20functional%20brain%20models&rft.jtitle=Frontiers%20in%20neuroinformatics&rft.au=Bekolay,%20Trevor&rft.date=2014-01-06&rft.volume=7&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.issn=1662-5196&rft.eissn=1662-5196&rft_id=info:doi/10.3389/fninf.2013.00048&rft_dat=%3Cproquest_doaj_%3E2295450875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-c041e87bb6c1ea92562e289daa63f4418b6c481ec1e7096b0e9ba716bdd285e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2295450875&rft_id=info:pmid/24431999&rfr_iscdi=true