Loading…
X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer
A time-resolved x-ray imager based on the gated microchannel plate (MCP) technology is reported. The single MCP microstrip line with a width of 20 mm is formed to improve the spatial resolving capability. The microstrip line cathode coated on the MCP is driven by four gating pulses simultaneously. E...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.98781-98785 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-5163c8e367a540efd86cc8410e20fa45c840e2a5641c3070ec19a93d414794e83 |
container_end_page | 98785 |
container_issue | |
container_start_page | 98781 |
container_title | IEEE access |
container_volume | 7 |
creator | Cai, Houzhi Deng, Pokun Fu, Wenyong Wang, Dong Lei, Yunfei Huang, Junkun Wang, Yong Liu, Jinyuan |
description | A time-resolved x-ray imager based on the gated microchannel plate (MCP) technology is reported. The single MCP microstrip line with a width of 20 mm is formed to improve the spatial resolving capability. The microstrip line cathode coated on the MCP is driven by four gating pulses simultaneously. Each gating pulse has an amplitude of −1.7 kV and a width of 160 ps. The temporal resolution of the imager is demonstrated by utilizing an ultraviolet (UV) laser pulse and a fiber bunch optics. A measured temporal resolution of 68 ps is achieved, while the photocathode is applied with the four gating pulses plus a -200 V DC bias. Moreover, the gain uniformity of the imager is charactered at the Shenguang-III (SG-III) laser facility. An x-ray with 3 ns width is used to irradiate the microstrip line cathode uniformly. Then, the gating pulses travel along the microstrip line cathode with a gradually reduced amplitude, which lead to a decreasing gain. The measured results show that the MCP gain is dropped to 30% along the gating pulse traveling direction, and a perpendicular gain variation of 4% is obtained. |
doi_str_mv | 10.1109/ACCESS.2019.2928422 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d3685668a11e40b08d5cec3ee2b67a0e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8760243</ieee_id><doaj_id>oai_doaj_org_article_d3685668a11e40b08d5cec3ee2b67a0e</doaj_id><sourcerecordid>2455621332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5163c8e367a540efd86cc8410e20fa45c840e2a5641c3070ec19a93d414794e83</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURB0f6CXgKet-Z7s0dZqhYqgrXYW0izszVl19RsKvrvTV0pzmXeDPPeDPOybEzwhBBc3txW1XSxmFBMygktqeKUnmQXlMgyZ4LJ03_4PBv1_RanUKkliotstcqfzTeadWYDAb26-IYMohh1XSrqVD06G3wfg9uhuXsH1PiA4hug6VcM0AFatjGYT-dbiGixAxuD7yBCuMrOGtP2MPrLl9nybvpSPeTzp_tZdTvPLRMq5oJIZhUwWRjBMTS1ktYqTjBQ3BguEk7QCMmJZbjAYElpSlZzwouSg2KX2WzQrb3Z6l1wnQnf2hunfxs-bLQJ0dkWdM2kElIqQwhwvMaqFhYsA6DrtB5D0roetHbBf-yhj3rr9-E9na8pF0JSwhhNU2yYOjymD9ActxKsD47owRF9cET_OZJY44HlAODIUIXElDP2A8LHhPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455621332</pqid></control><display><type>article</type><title>X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer</title><source>IEEE Xplore Open Access Journals</source><creator>Cai, Houzhi ; Deng, Pokun ; Fu, Wenyong ; Wang, Dong ; Lei, Yunfei ; Huang, Junkun ; Wang, Yong ; Liu, Jinyuan</creator><creatorcontrib>Cai, Houzhi ; Deng, Pokun ; Fu, Wenyong ; Wang, Dong ; Lei, Yunfei ; Huang, Junkun ; Wang, Yong ; Liu, Jinyuan</creatorcontrib><description>A time-resolved x-ray imager based on the gated microchannel plate (MCP) technology is reported. The single MCP microstrip line with a width of 20 mm is formed to improve the spatial resolving capability. The microstrip line cathode coated on the MCP is driven by four gating pulses simultaneously. Each gating pulse has an amplitude of −1.7 kV and a width of 160 ps. The temporal resolution of the imager is demonstrated by utilizing an ultraviolet (UV) laser pulse and a fiber bunch optics. A measured temporal resolution of 68 ps is achieved, while the photocathode is applied with the four gating pulses plus a -200 V DC bias. Moreover, the gain uniformity of the imager is charactered at the Shenguang-III (SG-III) laser facility. An x-ray with 3 ns width is used to irradiate the microstrip line cathode uniformly. Then, the gating pulses travel along the microstrip line cathode with a gradually reduced amplitude, which lead to a decreasing gain. The measured results show that the MCP gain is dropped to 30% along the gating pulse traveling direction, and a perpendicular gain variation of 4% is obtained.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2928422</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplitudes ; Cathodes ; Fiber lasers ; gain uniformity ; gated microchannel plate ; Image resolution ; Measurement by laser beam ; Microchannel plates ; Microchannels ; Microstrip ; Microstrip transmission lines ; Photocathodes ; Temporal resolution ; Ultraviolet lasers ; X-ray imager ; X-ray imaging ; X-ray lasers</subject><ispartof>IEEE access, 2019, Vol.7, p.98781-98785</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-5163c8e367a540efd86cc8410e20fa45c840e2a5641c3070ec19a93d414794e83</cites><orcidid>0000-0003-4140-5824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8760243$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Cai, Houzhi</creatorcontrib><creatorcontrib>Deng, Pokun</creatorcontrib><creatorcontrib>Fu, Wenyong</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Lei, Yunfei</creatorcontrib><creatorcontrib>Huang, Junkun</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Liu, Jinyuan</creatorcontrib><title>X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer</title><title>IEEE access</title><addtitle>Access</addtitle><description>A time-resolved x-ray imager based on the gated microchannel plate (MCP) technology is reported. The single MCP microstrip line with a width of 20 mm is formed to improve the spatial resolving capability. The microstrip line cathode coated on the MCP is driven by four gating pulses simultaneously. Each gating pulse has an amplitude of −1.7 kV and a width of 160 ps. The temporal resolution of the imager is demonstrated by utilizing an ultraviolet (UV) laser pulse and a fiber bunch optics. A measured temporal resolution of 68 ps is achieved, while the photocathode is applied with the four gating pulses plus a -200 V DC bias. Moreover, the gain uniformity of the imager is charactered at the Shenguang-III (SG-III) laser facility. An x-ray with 3 ns width is used to irradiate the microstrip line cathode uniformly. Then, the gating pulses travel along the microstrip line cathode with a gradually reduced amplitude, which lead to a decreasing gain. The measured results show that the MCP gain is dropped to 30% along the gating pulse traveling direction, and a perpendicular gain variation of 4% is obtained.</description><subject>Amplitudes</subject><subject>Cathodes</subject><subject>Fiber lasers</subject><subject>gain uniformity</subject><subject>gated microchannel plate</subject><subject>Image resolution</subject><subject>Measurement by laser beam</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Microstrip</subject><subject>Microstrip transmission lines</subject><subject>Photocathodes</subject><subject>Temporal resolution</subject><subject>Ultraviolet lasers</subject><subject>X-ray imager</subject><subject>X-ray imaging</subject><subject>X-ray lasers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURB0f6CXgKet-Z7s0dZqhYqgrXYW0izszVl19RsKvrvTV0pzmXeDPPeDPOybEzwhBBc3txW1XSxmFBMygktqeKUnmQXlMgyZ4LJ03_4PBv1_RanUKkliotstcqfzTeadWYDAb26-IYMohh1XSrqVD06G3wfg9uhuXsH1PiA4hug6VcM0AFatjGYT-dbiGixAxuD7yBCuMrOGtP2MPrLl9nybvpSPeTzp_tZdTvPLRMq5oJIZhUwWRjBMTS1ktYqTjBQ3BguEk7QCMmJZbjAYElpSlZzwouSg2KX2WzQrb3Z6l1wnQnf2hunfxs-bLQJ0dkWdM2kElIqQwhwvMaqFhYsA6DrtB5D0roetHbBf-yhj3rr9-E9na8pF0JSwhhNU2yYOjymD9ActxKsD47owRF9cET_OZJY44HlAODIUIXElDP2A8LHhPg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Cai, Houzhi</creator><creator>Deng, Pokun</creator><creator>Fu, Wenyong</creator><creator>Wang, Dong</creator><creator>Lei, Yunfei</creator><creator>Huang, Junkun</creator><creator>Wang, Yong</creator><creator>Liu, Jinyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4140-5824</orcidid></search><sort><creationdate>2019</creationdate><title>X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer</title><author>Cai, Houzhi ; Deng, Pokun ; Fu, Wenyong ; Wang, Dong ; Lei, Yunfei ; Huang, Junkun ; Wang, Yong ; Liu, Jinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5163c8e367a540efd86cc8410e20fa45c840e2a5641c3070ec19a93d414794e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Cathodes</topic><topic>Fiber lasers</topic><topic>gain uniformity</topic><topic>gated microchannel plate</topic><topic>Image resolution</topic><topic>Measurement by laser beam</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Microstrip</topic><topic>Microstrip transmission lines</topic><topic>Photocathodes</topic><topic>Temporal resolution</topic><topic>Ultraviolet lasers</topic><topic>X-ray imager</topic><topic>X-ray imaging</topic><topic>X-ray lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Houzhi</creatorcontrib><creatorcontrib>Deng, Pokun</creatorcontrib><creatorcontrib>Fu, Wenyong</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Lei, Yunfei</creatorcontrib><creatorcontrib>Huang, Junkun</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Liu, Jinyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Houzhi</au><au>Deng, Pokun</au><au>Fu, Wenyong</au><au>Wang, Dong</au><au>Lei, Yunfei</au><au>Huang, Junkun</au><au>Wang, Yong</au><au>Liu, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>98781</spage><epage>98785</epage><pages>98781-98785</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A time-resolved x-ray imager based on the gated microchannel plate (MCP) technology is reported. The single MCP microstrip line with a width of 20 mm is formed to improve the spatial resolving capability. The microstrip line cathode coated on the MCP is driven by four gating pulses simultaneously. Each gating pulse has an amplitude of −1.7 kV and a width of 160 ps. The temporal resolution of the imager is demonstrated by utilizing an ultraviolet (UV) laser pulse and a fiber bunch optics. A measured temporal resolution of 68 ps is achieved, while the photocathode is applied with the four gating pulses plus a -200 V DC bias. Moreover, the gain uniformity of the imager is charactered at the Shenguang-III (SG-III) laser facility. An x-ray with 3 ns width is used to irradiate the microstrip line cathode uniformly. Then, the gating pulses travel along the microstrip line cathode with a gradually reduced amplitude, which lead to a decreasing gain. The measured results show that the MCP gain is dropped to 30% along the gating pulse traveling direction, and a perpendicular gain variation of 4% is obtained.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2928422</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4140-5824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.98781-98785 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d3685668a11e40b08d5cec3ee2b67a0e |
source | IEEE Xplore Open Access Journals |
subjects | Amplitudes Cathodes Fiber lasers gain uniformity gated microchannel plate Image resolution Measurement by laser beam Microchannel plates Microchannels Microstrip Microstrip transmission lines Photocathodes Temporal resolution Ultraviolet lasers X-ray imager X-ray imaging X-ray lasers |
title | X-Ray Imager With a 20 mm Width Microstrip Line for the Extreme Ultraviolet Spectrometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-Ray%20Imager%20With%20a%2020%20mm%20Width%20Microstrip%20Line%20for%20the%20Extreme%20Ultraviolet%20Spectrometer&rft.jtitle=IEEE%20access&rft.au=Cai,%20Houzhi&rft.date=2019&rft.volume=7&rft.spage=98781&rft.epage=98785&rft.pages=98781-98785&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2928422&rft_dat=%3Cproquest_doaj_%3E2455621332%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-5163c8e367a540efd86cc8410e20fa45c840e2a5641c3070ec19a93d414794e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455621332&rft_id=info:pmid/&rft_ieee_id=8760243&rfr_iscdi=true |