Loading…

Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique

This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photop...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2017-10, Vol.7 (10), p.316
Main Authors: Berthod, Loïc, Shavdina, Olga, Verrier, Isabelle, Kämpfe, Thomas, Dellea, Olivier, Vocanson, Francis, Bichotte, Maxime, Jamon, Damien, Jourlin, Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923
cites cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923
container_end_page
container_issue 10
container_start_page 316
container_title Nanomaterials (Basel, Switzerland)
container_volume 7
creator Berthod, Loïc
Shavdina, Olga
Verrier, Isabelle
Kämpfe, Thomas
Dellea, Olivier
Vocanson, Francis
Bichotte, Maxime
Jamon, Damien
Jourlin, Yves
description This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.
doi_str_mv 10.3390/nano7100316
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6</doaj_id><sourcerecordid>1965685276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</originalsourceid><addsrcrecordid>eNpdks1qGzEUhUVpaUKaVfdF0FUpbqTRz4w2BWOaxmCakLhroZE0HpnxaCppHNxlHrVPUrlOgxNtJHSPPt17OAC8x-gLIQJd9Kr3JUaIYP4KnBaoFBMqBH59dD4B5zGuUV4Ck4qRt-CkEKggpKSnYHdjg_PGabh0138eHuCPDIwpjDqNwUZ471IL55sh-K01cBoHqxNUvYEL19uLu0FpC29Vch7eWtW531lU7-DMd513RnXwpvXJdxniV0EN7Q4urW5792u078CbRnXRnj_uZ-Dn5bfl7GqyuP4-n00XE82QSBNOES6akrJKY20Ep8YSk3uvhW04Q4zXrGIaU1oSrVTRWFJUNc-WUIVpIwpyBuYHrvFqLYfgNirspFdO_rvwYSVVSE53VhrCm1pkoq0w5ZgrUpmKYFI33Ajc8Mz6emANY72xRts-BdU9gz6v9K6VK7-VjHNOK5wBnw6A9sWzq-lCjuuNRJgTViK83Ws_Pn4WfPYrJrn2Y-izVxILznjFinLf0ueDSgcfY7DNExYjuY-IPIpIVn84HuBJ-z8Q5C8ODLgo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965685276</pqid></control><display><type>article</type><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</creator><creatorcontrib>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</creatorcontrib><description>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano7100316</identifier><identifier>PMID: 29023374</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chemical Sciences ; colloidal photolithography ; Electric fields ; Electromagnetism ; Engineering Sciences ; Glass substrates ; Hydrophobicity ; I.R. radiation ; Material chemistry ; Microspheres ; Nanomaterials ; Nanostructure ; Optical properties ; Optics ; Photocatalysis ; Photolithography ; Photonic ; Photonics ; Photosensitivity ; Photovoltaics ; Pillars ; Simulation ; sol-gel ; Sol-gel processes ; sub-wavelength structures ; Theoretical analysis ; TiO2 ; Titanium dioxide</subject><ispartof>Nanomaterials (Basel, Switzerland), 2017-10, Vol.7 (10), p.316</ispartof><rights>Copyright MDPI AG 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</citedby><cites>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</cites><orcidid>0000-0002-6249-8612 ; 0000-0002-5764-9674 ; 0000-0002-6653-2187 ; 0000-0001-5218-0793 ; 0000-0002-7935-2150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1965685276/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965685276?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29023374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ujm.hal.science/ujm-01635701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthod, Loïc</creatorcontrib><creatorcontrib>Shavdina, Olga</creatorcontrib><creatorcontrib>Verrier, Isabelle</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Dellea, Olivier</creatorcontrib><creatorcontrib>Vocanson, Francis</creatorcontrib><creatorcontrib>Bichotte, Maxime</creatorcontrib><creatorcontrib>Jamon, Damien</creatorcontrib><creatorcontrib>Jourlin, Yves</creatorcontrib><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</description><subject>Chemical Sciences</subject><subject>colloidal photolithography</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Glass substrates</subject><subject>Hydrophobicity</subject><subject>I.R. radiation</subject><subject>Material chemistry</subject><subject>Microspheres</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photocatalysis</subject><subject>Photolithography</subject><subject>Photonic</subject><subject>Photonics</subject><subject>Photosensitivity</subject><subject>Photovoltaics</subject><subject>Pillars</subject><subject>Simulation</subject><subject>sol-gel</subject><subject>Sol-gel processes</subject><subject>sub-wavelength structures</subject><subject>Theoretical analysis</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1qGzEUhUVpaUKaVfdF0FUpbqTRz4w2BWOaxmCakLhroZE0HpnxaCppHNxlHrVPUrlOgxNtJHSPPt17OAC8x-gLIQJd9Kr3JUaIYP4KnBaoFBMqBH59dD4B5zGuUV4Ck4qRt-CkEKggpKSnYHdjg_PGabh0138eHuCPDIwpjDqNwUZ471IL55sh-K01cBoHqxNUvYEL19uLu0FpC29Vch7eWtW531lU7-DMd513RnXwpvXJdxniV0EN7Q4urW5792u078CbRnXRnj_uZ-Dn5bfl7GqyuP4-n00XE82QSBNOES6akrJKY20Ep8YSk3uvhW04Q4zXrGIaU1oSrVTRWFJUNc-WUIVpIwpyBuYHrvFqLYfgNirspFdO_rvwYSVVSE53VhrCm1pkoq0w5ZgrUpmKYFI33Ajc8Mz6emANY72xRts-BdU9gz6v9K6VK7-VjHNOK5wBnw6A9sWzq-lCjuuNRJgTViK83Ws_Pn4WfPYrJrn2Y-izVxILznjFinLf0ueDSgcfY7DNExYjuY-IPIpIVn84HuBJ-z8Q5C8ODLgo</recordid><startdate>20171012</startdate><enddate>20171012</enddate><creator>Berthod, Loïc</creator><creator>Shavdina, Olga</creator><creator>Verrier, Isabelle</creator><creator>Kämpfe, Thomas</creator><creator>Dellea, Olivier</creator><creator>Vocanson, Francis</creator><creator>Bichotte, Maxime</creator><creator>Jamon, Damien</creator><creator>Jourlin, Yves</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6249-8612</orcidid><orcidid>https://orcid.org/0000-0002-5764-9674</orcidid><orcidid>https://orcid.org/0000-0002-6653-2187</orcidid><orcidid>https://orcid.org/0000-0001-5218-0793</orcidid><orcidid>https://orcid.org/0000-0002-7935-2150</orcidid></search><sort><creationdate>20171012</creationdate><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><author>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical Sciences</topic><topic>colloidal photolithography</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Glass substrates</topic><topic>Hydrophobicity</topic><topic>I.R. radiation</topic><topic>Material chemistry</topic><topic>Microspheres</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photocatalysis</topic><topic>Photolithography</topic><topic>Photonic</topic><topic>Photonics</topic><topic>Photosensitivity</topic><topic>Photovoltaics</topic><topic>Pillars</topic><topic>Simulation</topic><topic>sol-gel</topic><topic>Sol-gel processes</topic><topic>sub-wavelength structures</topic><topic>Theoretical analysis</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthod, Loïc</creatorcontrib><creatorcontrib>Shavdina, Olga</creatorcontrib><creatorcontrib>Verrier, Isabelle</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Dellea, Olivier</creatorcontrib><creatorcontrib>Vocanson, Francis</creatorcontrib><creatorcontrib>Bichotte, Maxime</creatorcontrib><creatorcontrib>Jamon, Damien</creatorcontrib><creatorcontrib>Jourlin, Yves</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthod, Loïc</au><au>Shavdina, Olga</au><au>Verrier, Isabelle</au><au>Kämpfe, Thomas</au><au>Dellea, Olivier</au><au>Vocanson, Francis</au><au>Bichotte, Maxime</au><au>Jamon, Damien</au><au>Jourlin, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2017-10-12</date><risdate>2017</risdate><volume>7</volume><issue>10</issue><spage>316</spage><pages>316-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29023374</pmid><doi>10.3390/nano7100316</doi><orcidid>https://orcid.org/0000-0002-6249-8612</orcidid><orcidid>https://orcid.org/0000-0002-5764-9674</orcidid><orcidid>https://orcid.org/0000-0002-6653-2187</orcidid><orcidid>https://orcid.org/0000-0001-5218-0793</orcidid><orcidid>https://orcid.org/0000-0002-7935-2150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2017-10, Vol.7 (10), p.316
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6
source PubMed (Medline); Publicly Available Content Database; IngentaConnect Journals
subjects Chemical Sciences
colloidal photolithography
Electric fields
Electromagnetism
Engineering Sciences
Glass substrates
Hydrophobicity
I.R. radiation
Material chemistry
Microspheres
Nanomaterials
Nanostructure
Optical properties
Optics
Photocatalysis
Photolithography
Photonic
Photonics
Photosensitivity
Photovoltaics
Pillars
Simulation
sol-gel
Sol-gel processes
sub-wavelength structures
Theoretical analysis
TiO2
Titanium dioxide
title Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20TiO%E2%82%82%20Nanostructures%20with%20Improved%20Aspect%20and%20Line/Space%20Ratio%20Realized%20by%20Colloidal%20Photolithography%20Technique&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Berthod,%20Lo%C3%AFc&rft.date=2017-10-12&rft.volume=7&rft.issue=10&rft.spage=316&rft.pages=316-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano7100316&rft_dat=%3Cproquest_doaj_%3E1965685276%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965685276&rft_id=info:pmid/29023374&rfr_iscdi=true