Loading…
Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique
This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photop...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2017-10, Vol.7 (10), p.316 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923 |
container_end_page | |
container_issue | 10 |
container_start_page | 316 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 7 |
creator | Berthod, Loïc Shavdina, Olga Verrier, Isabelle Kämpfe, Thomas Dellea, Olivier Vocanson, Francis Bichotte, Maxime Jamon, Damien Jourlin, Yves |
description | This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems. |
doi_str_mv | 10.3390/nano7100316 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6</doaj_id><sourcerecordid>1965685276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</originalsourceid><addsrcrecordid>eNpdks1qGzEUhUVpaUKaVfdF0FUpbqTRz4w2BWOaxmCakLhroZE0HpnxaCppHNxlHrVPUrlOgxNtJHSPPt17OAC8x-gLIQJd9Kr3JUaIYP4KnBaoFBMqBH59dD4B5zGuUV4Ck4qRt-CkEKggpKSnYHdjg_PGabh0138eHuCPDIwpjDqNwUZ471IL55sh-K01cBoHqxNUvYEL19uLu0FpC29Vch7eWtW531lU7-DMd513RnXwpvXJdxniV0EN7Q4urW5792u078CbRnXRnj_uZ-Dn5bfl7GqyuP4-n00XE82QSBNOES6akrJKY20Ep8YSk3uvhW04Q4zXrGIaU1oSrVTRWFJUNc-WUIVpIwpyBuYHrvFqLYfgNirspFdO_rvwYSVVSE53VhrCm1pkoq0w5ZgrUpmKYFI33Ajc8Mz6emANY72xRts-BdU9gz6v9K6VK7-VjHNOK5wBnw6A9sWzq-lCjuuNRJgTViK83Ws_Pn4WfPYrJrn2Y-izVxILznjFinLf0ueDSgcfY7DNExYjuY-IPIpIVn84HuBJ-z8Q5C8ODLgo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965685276</pqid></control><display><type>article</type><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</creator><creatorcontrib>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</creatorcontrib><description>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano7100316</identifier><identifier>PMID: 29023374</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chemical Sciences ; colloidal photolithography ; Electric fields ; Electromagnetism ; Engineering Sciences ; Glass substrates ; Hydrophobicity ; I.R. radiation ; Material chemistry ; Microspheres ; Nanomaterials ; Nanostructure ; Optical properties ; Optics ; Photocatalysis ; Photolithography ; Photonic ; Photonics ; Photosensitivity ; Photovoltaics ; Pillars ; Simulation ; sol-gel ; Sol-gel processes ; sub-wavelength structures ; Theoretical analysis ; TiO2 ; Titanium dioxide</subject><ispartof>Nanomaterials (Basel, Switzerland), 2017-10, Vol.7 (10), p.316</ispartof><rights>Copyright MDPI AG 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</citedby><cites>FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</cites><orcidid>0000-0002-6249-8612 ; 0000-0002-5764-9674 ; 0000-0002-6653-2187 ; 0000-0001-5218-0793 ; 0000-0002-7935-2150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1965685276/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965685276?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29023374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ujm.hal.science/ujm-01635701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthod, Loïc</creatorcontrib><creatorcontrib>Shavdina, Olga</creatorcontrib><creatorcontrib>Verrier, Isabelle</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Dellea, Olivier</creatorcontrib><creatorcontrib>Vocanson, Francis</creatorcontrib><creatorcontrib>Bichotte, Maxime</creatorcontrib><creatorcontrib>Jamon, Damien</creatorcontrib><creatorcontrib>Jourlin, Yves</creatorcontrib><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</description><subject>Chemical Sciences</subject><subject>colloidal photolithography</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Glass substrates</subject><subject>Hydrophobicity</subject><subject>I.R. radiation</subject><subject>Material chemistry</subject><subject>Microspheres</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photocatalysis</subject><subject>Photolithography</subject><subject>Photonic</subject><subject>Photonics</subject><subject>Photosensitivity</subject><subject>Photovoltaics</subject><subject>Pillars</subject><subject>Simulation</subject><subject>sol-gel</subject><subject>Sol-gel processes</subject><subject>sub-wavelength structures</subject><subject>Theoretical analysis</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1qGzEUhUVpaUKaVfdF0FUpbqTRz4w2BWOaxmCakLhroZE0HpnxaCppHNxlHrVPUrlOgxNtJHSPPt17OAC8x-gLIQJd9Kr3JUaIYP4KnBaoFBMqBH59dD4B5zGuUV4Ck4qRt-CkEKggpKSnYHdjg_PGabh0138eHuCPDIwpjDqNwUZ471IL55sh-K01cBoHqxNUvYEL19uLu0FpC29Vch7eWtW531lU7-DMd513RnXwpvXJdxniV0EN7Q4urW5792u078CbRnXRnj_uZ-Dn5bfl7GqyuP4-n00XE82QSBNOES6akrJKY20Ep8YSk3uvhW04Q4zXrGIaU1oSrVTRWFJUNc-WUIVpIwpyBuYHrvFqLYfgNirspFdO_rvwYSVVSE53VhrCm1pkoq0w5ZgrUpmKYFI33Ajc8Mz6emANY72xRts-BdU9gz6v9K6VK7-VjHNOK5wBnw6A9sWzq-lCjuuNRJgTViK83Ws_Pn4WfPYrJrn2Y-izVxILznjFinLf0ueDSgcfY7DNExYjuY-IPIpIVn84HuBJ-z8Q5C8ODLgo</recordid><startdate>20171012</startdate><enddate>20171012</enddate><creator>Berthod, Loïc</creator><creator>Shavdina, Olga</creator><creator>Verrier, Isabelle</creator><creator>Kämpfe, Thomas</creator><creator>Dellea, Olivier</creator><creator>Vocanson, Francis</creator><creator>Bichotte, Maxime</creator><creator>Jamon, Damien</creator><creator>Jourlin, Yves</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6249-8612</orcidid><orcidid>https://orcid.org/0000-0002-5764-9674</orcidid><orcidid>https://orcid.org/0000-0002-6653-2187</orcidid><orcidid>https://orcid.org/0000-0001-5218-0793</orcidid><orcidid>https://orcid.org/0000-0002-7935-2150</orcidid></search><sort><creationdate>20171012</creationdate><title>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</title><author>Berthod, Loïc ; Shavdina, Olga ; Verrier, Isabelle ; Kämpfe, Thomas ; Dellea, Olivier ; Vocanson, Francis ; Bichotte, Maxime ; Jamon, Damien ; Jourlin, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical Sciences</topic><topic>colloidal photolithography</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Glass substrates</topic><topic>Hydrophobicity</topic><topic>I.R. radiation</topic><topic>Material chemistry</topic><topic>Microspheres</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photocatalysis</topic><topic>Photolithography</topic><topic>Photonic</topic><topic>Photonics</topic><topic>Photosensitivity</topic><topic>Photovoltaics</topic><topic>Pillars</topic><topic>Simulation</topic><topic>sol-gel</topic><topic>Sol-gel processes</topic><topic>sub-wavelength structures</topic><topic>Theoretical analysis</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthod, Loïc</creatorcontrib><creatorcontrib>Shavdina, Olga</creatorcontrib><creatorcontrib>Verrier, Isabelle</creatorcontrib><creatorcontrib>Kämpfe, Thomas</creatorcontrib><creatorcontrib>Dellea, Olivier</creatorcontrib><creatorcontrib>Vocanson, Francis</creatorcontrib><creatorcontrib>Bichotte, Maxime</creatorcontrib><creatorcontrib>Jamon, Damien</creatorcontrib><creatorcontrib>Jourlin, Yves</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthod, Loïc</au><au>Shavdina, Olga</au><au>Verrier, Isabelle</au><au>Kämpfe, Thomas</au><au>Dellea, Olivier</au><au>Vocanson, Francis</au><au>Bichotte, Maxime</au><au>Jamon, Damien</au><au>Jourlin, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2017-10-12</date><risdate>2017</risdate><volume>7</volume><issue>10</issue><spage>316</spage><pages>316-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography) with the goal of better controlling the geometry of the fabricated nano-scale structures-in this case, hexagonally arranged nanopillars-printed in a layer of directly photopatternable sol-gel TiO₂. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar's cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size) greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars) greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29023374</pmid><doi>10.3390/nano7100316</doi><orcidid>https://orcid.org/0000-0002-6249-8612</orcidid><orcidid>https://orcid.org/0000-0002-5764-9674</orcidid><orcidid>https://orcid.org/0000-0002-6653-2187</orcidid><orcidid>https://orcid.org/0000-0001-5218-0793</orcidid><orcidid>https://orcid.org/0000-0002-7935-2150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2017-10, Vol.7 (10), p.316 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d36fb96b5e814616a38d8313bf6d91f6 |
source | PubMed (Medline); Publicly Available Content Database; IngentaConnect Journals |
subjects | Chemical Sciences colloidal photolithography Electric fields Electromagnetism Engineering Sciences Glass substrates Hydrophobicity I.R. radiation Material chemistry Microspheres Nanomaterials Nanostructure Optical properties Optics Photocatalysis Photolithography Photonic Photonics Photosensitivity Photovoltaics Pillars Simulation sol-gel Sol-gel processes sub-wavelength structures Theoretical analysis TiO2 Titanium dioxide |
title | Periodic TiO₂ Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20TiO%E2%82%82%20Nanostructures%20with%20Improved%20Aspect%20and%20Line/Space%20Ratio%20Realized%20by%20Colloidal%20Photolithography%20Technique&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Berthod,%20Lo%C3%AFc&rft.date=2017-10-12&rft.volume=7&rft.issue=10&rft.spage=316&rft.pages=316-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano7100316&rft_dat=%3Cproquest_doaj_%3E1965685276%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-64012f7458c1cd964de3d337b9ef65056b585c14473caa2fe328b67104a14f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965685276&rft_id=info:pmid/29023374&rfr_iscdi=true |