Loading…

Non-Destructive Damage Detection of Structural Joint by Coaxial Correlation Method in 6D Space

Failure of joints can lead to structural collapse. It is vital to monitor joint stiffness during operation to prevent such failures. This paper proposes a novel method for the quality assessment of structural joints using coaxial correlation in 6D space. Coaxially placed 6D sensors on either side of...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) 2023-04, Vol.13 (5), p.1151
Main Authors: Buka-Vaivade, Karina, Kurtenoks, Viktors, Serdjuks, Dmitrijs
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Failure of joints can lead to structural collapse. It is vital to monitor joint stiffness during operation to prevent such failures. This paper proposes a novel method for the quality assessment of structural joints using coaxial correlation in 6D space. Coaxially placed 6D sensors on either side of the joint implemented by 3D accelerometers and 3D gyroscopes with wide frequency range, automatic synchronisation between the input signal and receivers and response signal averaging are presented. The root mean square (RMS) value from the obtained signals convolution is proposed as a measure of the similarity between two signals for monitoring joint degradation. The method’s effectiveness was tested on steel beam splice connection, where it was found that the RMS of convolution signals in 6D space showed a direct correlation between the calculated RMS value in X, Y, GX, and GY axes directions and the stiffness grades of the joint. The paper concludes that the nature of the RMS during the degradation of the joint may change in different axes, and wrongly chosen axes may lead to wrong conclusions regarding the state of the investigated joint, especially in the case of complex joints, so that the measurements in 6D provide higher reliability of the result interpretation.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13051151