Loading…

Clone Detection Based on Physical Layer Reputation for Proximity Service

Proximity-based service (ProSe) provides direct communications among smart sensor nodes in proximity which aims at reserving resource consumption and alleviating the load in base stations, which is a promising solution for smart sensor systems that possess limited computing and energy resources. Dur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.3948-3957
Main Authors: Pan, Fei, Pang, Zhibo, Xiao, Ming, Wen, Hong, Liao, Run-Fa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proximity-based service (ProSe) provides direct communications among smart sensor nodes in proximity which aims at reserving resource consumption and alleviating the load in base stations, which is a promising solution for smart sensor systems that possess limited computing and energy resources. During the ProSe direct communications, most of the prior art security methods are usually provided by the ProSe function and are based on complex cryptography. However, despite the computing complexity, it is difficult for cryptographic methods to detect clone attack which is a common kind of attack in sensor systems. Clone nodes feature different physical positions but claim colliding IDs with captured nodes. Thus, clone nodes can be detected by spatial differences, in particular, by the surveillance of physical layer channel state information (CSI). However, CSI is not absolute static due to the random noise in wireless propagation environment. Accordingly, the detection accuracy varies with the stability of CSI. To address this challenge, we take the first attempt to introduce physical layer reputation and then elaborate the physical layer reputation based clone detection protocol to detect clone attack in multiple scenarios. The proposed protocol significantly improves the detection rate and false alarm rate and it is validated both by simulations and realizations.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2888693