Loading…

Dynamic Induction Heating Temperature Field Analysis of Spiral Bevel Gears

Combining tooth surface induction heating and shot peening is an efficient method to improve tooth surface performance. Reasonable designs of the induction coil structure and parameters are essential for achieving uniform and efficient tooth surface heating. In this work, to precisely control the to...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-10, Vol.12 (19), p.10018
Main Authors: Zhang, Yin, Zhang, Hui, Yan, Yixiong, Zhu, Pengfei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Combining tooth surface induction heating and shot peening is an efficient method to improve tooth surface performance. Reasonable designs of the induction coil structure and parameters are essential for achieving uniform and efficient tooth surface heating. In this work, to precisely control the tooth surface temperature field and improve the heat uniformity across the tooth surface, a transverse coil (TC) and a longitudinal coil (LC) were designed, and the gear was set to rotate at a constant speed of 20 r/min, dividing the tooth surface is into a shot-peening area and heating area. Further, dynamic numerical simulations were performed using COMSOL Multiphysics in combination with the uniform rotation of gears to investigate the effect of the coil structure on the temperature field of the outer surface of gears. The results of the analyses combining the effects of different electrical parameters revealed that the gear surface temperature under LC heating was more uniformly distributed in the axial and circumferential directions, the tooth surface temperature fluctuations were smaller, the temperature difference between the root and top of the tooth was smaller, an coil heating was more efficient. Thus, the LC was deemed suitable for use as the spiral bevel gear induction heating coil. Finally, heating experiments were conducted using the LC to validate the simulation model. The results show that the use of LC heating can achieve the research goals of uniform temperature field distribution on the tooth surface and efficient temperature rise, providing the prerequisite for shot peening.
ISSN:2076-3417
2076-3417
DOI:10.3390/app121910018