Loading…
Adhesion of Candida albicans on PTFE membranes used in guided bone regeneration
Objectives Guided bone regeneration (GBR) is a core procedure used to regenerate bone defects. The aim of the study was to investigate the adherence of Candida albicans on six commercially available polytetrafluoroethylene (PTFE) membranes used in GBR procedures and the subsequent clinical consequen...
Saved in:
Published in: | Clinical and experimental dental research 2024-08, Vol.10 (4), p.e902-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives
Guided bone regeneration (GBR) is a core procedure used to regenerate bone defects. The aim of the study was to investigate the adherence of Candida albicans on six commercially available polytetrafluoroethylene (PTFE) membranes used in GBR procedures and the subsequent clinical consequences.
Materials and Methods
Six commercially available PTFE membranes were tested. Two of the membranes had a textured surface and the other four a plane, nontextured one. C. albicans (ATCC 24433) was cultured for 24 h, and its cell surface hydrophobicity was assessed using a modified method. C. albicans adhesion to membrane discs was studied by scanning electron microscopy (SEM) and real‐time polymerase chain reaction (PCR).
Results
C. albicans was found to be hydrophobic (77.25%). SEM analysis showed that C. albicans adherence to all membranes examined was characterized by patchy, scattered, and small clustered patterns except for one nontextured membrane with a most rough surface in which a thick biofilm was observed. Real‐time PCR quantification revealed significantly greater adhesion of C. albicans cells to PTFE membranes than the control membrane (p ≤ .001) with the membranes having a textured surface exhibiting the highest count of 2680 × 104 cells/ml compared to the count of 707 × 104 cells/mL on those with a nontextured one (p ≤ .001). One membrane with nontextured surface, but with most rough surface was found to exhibit the highest count of 3010 × 104 cells/ml (p ≤ .05).
Conclusion
The results of this study indicate that C. albicans adhesion on membranes' surfaces depends on the degree of surface roughness and/or on the presence of a texture. Textured PTFE membranes and/or membranes high roughness showed significantly more adhered C. albicans cells. These findings can impact the surgeon's choice of GBR membrane and postoperative maintenance. |
---|---|
ISSN: | 2057-4347 2057-4347 |
DOI: | 10.1002/cre2.902 |