Loading…

Disrupted grey matter network morphology in pediatric posttraumatic stress disorder

Disrupted topological organization of brain functional networks has been widely observed in posttraumatic stress disorder (PTSD). However, the topological organization of the brain grey matter (GM) network has not yet been investigated in pediatric PTSD who was more vulnerable to develop PTSD when e...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage clinical 2018-01, Vol.18, p.943-951
Main Authors: Niu, Running, Lei, Du, Chen, Fuqin, Chen, Ying, Suo, Xueling, Li, Lingjiang, Lui, Su, Huang, Xiaoqi, Sweeney, John A., Gong, Qiyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Disrupted topological organization of brain functional networks has been widely observed in posttraumatic stress disorder (PTSD). However, the topological organization of the brain grey matter (GM) network has not yet been investigated in pediatric PTSD who was more vulnerable to develop PTSD when exposed to stress. Twenty two pediatric PTSD patients and 22 matched trauma-exposed controls who survived a massive earthquake (8.0 magnitude on Richter scale) in Sichuan Province of western China in 2008 underwent structural brain imaging with MRI 8–15 months after the earthquake. Brain networks were constructed based on the morphological similarity of GM across regions, and analyzed using graph theory approaches. Nonparametric permutation testing was performed to assess group differences in each topological metric. Compared with controls, brain networks of PTSD patients were characterized by decreased characteristic path length (P = 0.0060) and increased clustering coefficient (P = 0.0227), global efficiency (P = 0.0085) and local efficiency (P = 0.0024). Locally, patients with PTSD exhibited increased centrality in nodes of the default-mode (DMN), central executive (CEN) and salience networks (SN), involving medial prefrontal (mPFC), parietal, anterior cingulate (ACC), occipital and olfactory cortex and hippocampus. Our analyses of topological brain networks in children with PTSD indicate a significantly more segregated and integrated organization. The associations and disassociations between these grey matter findings and white matter (WM) and functional changes previously reported in this sample may be important for diagnostic purposes and understanding the brain maturational effects of pediatric PTSD. •Brain networks of children with PTSD were psychoradiologically characterized by more segregated and integrated organization.•Locally, pediatric PTSD patients exhibited increased centrality in nodes of three core neocortical networks.•There are associations and disassociations among multimodal MRI findings in the same population of pediatric PTSD.•Increased local efficiency relative to controls was greater in 13-16 year old than 10-12 year old PTSD patients.
ISSN:2213-1582
2213-1582
DOI:10.1016/j.nicl.2018.03.030