Loading…

lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway

Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy. Nucleic acids 2019-09, Vol.17, p.504-515
Main Authors: Liu, Xiao-Qian, Duan, Li-Shuang, Chen, Yong-Quan, Jin, Xiao-Ju, Zhu, Na-Na, Zhou, Xun, Wei, Han-Wei, Yin, Lei, Guo, Jian-Rong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 515
container_issue
container_start_page 504
container_title Molecular therapy. Nucleic acids
container_volume 17
creator Liu, Xiao-Qian
Duan, Li-Shuang
Chen, Yong-Quan
Jin, Xiao-Ju
Zhu, Na-Na
Zhou, Xun
Wei, Han-Wei
Yin, Lei
Guo, Jian-Rong
description Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully understood. Notably, we aim to examine the expression of MALAT1 in diabetic mice and its role in wound healing involving the hypoxia-inducible factor-1α (HIF-1α) signaling pathway with a modified autologous blood preservative solution reported. A mouse model of diabetes was established. MALAT1 was identified to promote the activation of the HIF-1α signaling pathway and to be enriched in autologous blood through modified preservation, which might facilitate the improvement of physiological function of blood cells. Through gain- or loss-of-function approaches, viability of fibroblasts cultured in high glucose, wound healing of mice, and collagen expression in wound areas were enhanced by MALAT1 and HIF-1α. Taken together, the present study demonstrated that the physiological status of mouse blood was effectively improved by modified autologous blood preservation, which exhibited upregulated MALAT1, thereby accelerating the fibroblast activation and wound healing in diabetic mice via the activation of the HIF-1α signaling pathway. The upregulation of MALAT1 activating the HIF-1α signaling pathway provides a novel insight into drug targets against diabetes.
doi_str_mv 10.1016/j.omtn.2019.05.020
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d3b962fe5517448291d454cd8ef8e472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d3b962fe5517448291d454cd8ef8e472</doaj_id><sourcerecordid>2265773898</sourcerecordid><originalsourceid>FETCH-LOGICAL-d360t-6c05220e9f4a9955bc600d20ab9df9cff0cf5208704a236f367e991bd93441aa3</originalsourceid><addsrcrecordid>eNpdkc1u1DAURiMEolXpC7BAltiwSfB_4g1SKJQZaQYQDGIZOfZ1xqNM3CZOq-55ob5InwmLKajFG_van47uPc6ylwQXBBP5dleEfRwKiokqsCgwxU-yY0okzalg5OmD81F2Ok07nJbEhEr6PDtihHEuRXWc_eoH8-1zjdb1qt4QVBsDPYw6woR-hnmwaAG690OHgkMfvG4heoPW3gDajHqY3DyBRdc-btE6WO98quo5hj50YZ7Q-z4Ei668RnELaLE8z8ndLfruu-EA_arj9lrfvMieOd1PcHq_n2Q_zj9uzhb56sun5Vm9yi2TOObSYEEpBuW4VkqI1kiMLcW6VdYp4xw2TlBclZhryqRjsgSlSGtVmpZozU6y5YFrg941F6Pf6_GmCdo3fy7C2DV6TAP20FjWKkkdCEFKziuqiOWCG1uBq4CXNLHeHVgXc7sHa2CIo-4fQR-_DH7bdOGqkcl7xXgCvLkHjOFyhik2ez8l-70eILlrKJWiLFmlqhR9_V90F-YxOUwphiuOabKRUq8edvSvlb-fzX4DwmytPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308402955</pqid></control><display><type>article</type><title>lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>ScienceDirect Journals</source><creator>Liu, Xiao-Qian ; Duan, Li-Shuang ; Chen, Yong-Quan ; Jin, Xiao-Ju ; Zhu, Na-Na ; Zhou, Xun ; Wei, Han-Wei ; Yin, Lei ; Guo, Jian-Rong</creator><creatorcontrib>Liu, Xiao-Qian ; Duan, Li-Shuang ; Chen, Yong-Quan ; Jin, Xiao-Ju ; Zhu, Na-Na ; Zhou, Xun ; Wei, Han-Wei ; Yin, Lei ; Guo, Jian-Rong</creatorcontrib><description>Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully understood. Notably, we aim to examine the expression of MALAT1 in diabetic mice and its role in wound healing involving the hypoxia-inducible factor-1α (HIF-1α) signaling pathway with a modified autologous blood preservative solution reported. A mouse model of diabetes was established. MALAT1 was identified to promote the activation of the HIF-1α signaling pathway and to be enriched in autologous blood through modified preservation, which might facilitate the improvement of physiological function of blood cells. Through gain- or loss-of-function approaches, viability of fibroblasts cultured in high glucose, wound healing of mice, and collagen expression in wound areas were enhanced by MALAT1 and HIF-1α. Taken together, the present study demonstrated that the physiological status of mouse blood was effectively improved by modified autologous blood preservation, which exhibited upregulated MALAT1, thereby accelerating the fibroblast activation and wound healing in diabetic mice via the activation of the HIF-1α signaling pathway. The upregulation of MALAT1 activating the HIF-1α signaling pathway provides a novel insight into drug targets against diabetes.</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1016/j.omtn.2019.05.020</identifier><identifier>PMID: 31344658</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Adenocarcinoma ; Biomarkers ; Blood cells ; Blood platelets ; Collagen ; Diabetes ; Diabetes mellitus ; Drinking water ; Fibroblasts ; Hyperglycemia ; Hypoxia-inducible factors ; Insulin resistance ; Lung cancer ; Metastases ; Non-coding RNA ; Physiology ; Preservation ; Preservatives ; Signal transduction ; Transcription ; Vascular endothelial growth factor ; Wound healing</subject><ispartof>Molecular therapy. Nucleic acids, 2019-09, Vol.17, p.504-515</ispartof><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The Authors</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658834/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2308402955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31344658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiao-Qian</creatorcontrib><creatorcontrib>Duan, Li-Shuang</creatorcontrib><creatorcontrib>Chen, Yong-Quan</creatorcontrib><creatorcontrib>Jin, Xiao-Ju</creatorcontrib><creatorcontrib>Zhu, Na-Na</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Wei, Han-Wei</creatorcontrib><creatorcontrib>Yin, Lei</creatorcontrib><creatorcontrib>Guo, Jian-Rong</creatorcontrib><title>lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway</title><title>Molecular therapy. Nucleic acids</title><addtitle>Mol Ther Nucleic Acids</addtitle><description>Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully understood. Notably, we aim to examine the expression of MALAT1 in diabetic mice and its role in wound healing involving the hypoxia-inducible factor-1α (HIF-1α) signaling pathway with a modified autologous blood preservative solution reported. A mouse model of diabetes was established. MALAT1 was identified to promote the activation of the HIF-1α signaling pathway and to be enriched in autologous blood through modified preservation, which might facilitate the improvement of physiological function of blood cells. Through gain- or loss-of-function approaches, viability of fibroblasts cultured in high glucose, wound healing of mice, and collagen expression in wound areas were enhanced by MALAT1 and HIF-1α. Taken together, the present study demonstrated that the physiological status of mouse blood was effectively improved by modified autologous blood preservation, which exhibited upregulated MALAT1, thereby accelerating the fibroblast activation and wound healing in diabetic mice via the activation of the HIF-1α signaling pathway. The upregulation of MALAT1 activating the HIF-1α signaling pathway provides a novel insight into drug targets against diabetes.</description><subject>Adenocarcinoma</subject><subject>Biomarkers</subject><subject>Blood cells</subject><subject>Blood platelets</subject><subject>Collagen</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Drinking water</subject><subject>Fibroblasts</subject><subject>Hyperglycemia</subject><subject>Hypoxia-inducible factors</subject><subject>Insulin resistance</subject><subject>Lung cancer</subject><subject>Metastases</subject><subject>Non-coding RNA</subject><subject>Physiology</subject><subject>Preservation</subject><subject>Preservatives</subject><subject>Signal transduction</subject><subject>Transcription</subject><subject>Vascular endothelial growth factor</subject><subject>Wound healing</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1u1DAURiMEolXpC7BAltiwSfB_4g1SKJQZaQYQDGIZOfZ1xqNM3CZOq-55ob5InwmLKajFG_van47uPc6ylwQXBBP5dleEfRwKiokqsCgwxU-yY0okzalg5OmD81F2Ok07nJbEhEr6PDtihHEuRXWc_eoH8-1zjdb1qt4QVBsDPYw6woR-hnmwaAG690OHgkMfvG4heoPW3gDajHqY3DyBRdc-btE6WO98quo5hj50YZ7Q-z4Ei668RnELaLE8z8ndLfruu-EA_arj9lrfvMieOd1PcHq_n2Q_zj9uzhb56sun5Vm9yi2TOObSYEEpBuW4VkqI1kiMLcW6VdYp4xw2TlBclZhryqRjsgSlSGtVmpZozU6y5YFrg941F6Pf6_GmCdo3fy7C2DV6TAP20FjWKkkdCEFKziuqiOWCG1uBq4CXNLHeHVgXc7sHa2CIo-4fQR-_DH7bdOGqkcl7xXgCvLkHjOFyhik2ez8l-70eILlrKJWiLFmlqhR9_V90F-YxOUwphiuOabKRUq8edvSvlb-fzX4DwmytPQ</recordid><startdate>20190906</startdate><enddate>20190906</enddate><creator>Liu, Xiao-Qian</creator><creator>Duan, Li-Shuang</creator><creator>Chen, Yong-Quan</creator><creator>Jin, Xiao-Ju</creator><creator>Zhu, Na-Na</creator><creator>Zhou, Xun</creator><creator>Wei, Han-Wei</creator><creator>Yin, Lei</creator><creator>Guo, Jian-Rong</creator><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><general>Elsevier</general><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190906</creationdate><title>lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway</title><author>Liu, Xiao-Qian ; Duan, Li-Shuang ; Chen, Yong-Quan ; Jin, Xiao-Ju ; Zhu, Na-Na ; Zhou, Xun ; Wei, Han-Wei ; Yin, Lei ; Guo, Jian-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d360t-6c05220e9f4a9955bc600d20ab9df9cff0cf5208704a236f367e991bd93441aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenocarcinoma</topic><topic>Biomarkers</topic><topic>Blood cells</topic><topic>Blood platelets</topic><topic>Collagen</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Drinking water</topic><topic>Fibroblasts</topic><topic>Hyperglycemia</topic><topic>Hypoxia-inducible factors</topic><topic>Insulin resistance</topic><topic>Lung cancer</topic><topic>Metastases</topic><topic>Non-coding RNA</topic><topic>Physiology</topic><topic>Preservation</topic><topic>Preservatives</topic><topic>Signal transduction</topic><topic>Transcription</topic><topic>Vascular endothelial growth factor</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao-Qian</creatorcontrib><creatorcontrib>Duan, Li-Shuang</creatorcontrib><creatorcontrib>Chen, Yong-Quan</creatorcontrib><creatorcontrib>Jin, Xiao-Ju</creatorcontrib><creatorcontrib>Zhu, Na-Na</creatorcontrib><creatorcontrib>Zhou, Xun</creatorcontrib><creatorcontrib>Wei, Han-Wei</creatorcontrib><creatorcontrib>Yin, Lei</creatorcontrib><creatorcontrib>Guo, Jian-Rong</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao-Qian</au><au>Duan, Li-Shuang</au><au>Chen, Yong-Quan</au><au>Jin, Xiao-Ju</au><au>Zhu, Na-Na</au><au>Zhou, Xun</au><au>Wei, Han-Wei</au><au>Yin, Lei</au><au>Guo, Jian-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><addtitle>Mol Ther Nucleic Acids</addtitle><date>2019-09-06</date><risdate>2019</risdate><volume>17</volume><spage>504</spage><epage>515</epage><pages>504-515</pages><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully understood. Notably, we aim to examine the expression of MALAT1 in diabetic mice and its role in wound healing involving the hypoxia-inducible factor-1α (HIF-1α) signaling pathway with a modified autologous blood preservative solution reported. A mouse model of diabetes was established. MALAT1 was identified to promote the activation of the HIF-1α signaling pathway and to be enriched in autologous blood through modified preservation, which might facilitate the improvement of physiological function of blood cells. Through gain- or loss-of-function approaches, viability of fibroblasts cultured in high glucose, wound healing of mice, and collagen expression in wound areas were enhanced by MALAT1 and HIF-1α. Taken together, the present study demonstrated that the physiological status of mouse blood was effectively improved by modified autologous blood preservation, which exhibited upregulated MALAT1, thereby accelerating the fibroblast activation and wound healing in diabetic mice via the activation of the HIF-1α signaling pathway. The upregulation of MALAT1 activating the HIF-1α signaling pathway provides a novel insight into drug targets against diabetes.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>31344658</pmid><doi>10.1016/j.omtn.2019.05.020</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-2531
ispartof Molecular therapy. Nucleic acids, 2019-09, Vol.17, p.504-515
issn 2162-2531
2162-2531
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d3b962fe5517448291d454cd8ef8e472
source PubMed (Medline); Publicly Available Content Database; ScienceDirect Journals
subjects Adenocarcinoma
Biomarkers
Blood cells
Blood platelets
Collagen
Diabetes
Diabetes mellitus
Drinking water
Fibroblasts
Hyperglycemia
Hypoxia-inducible factors
Insulin resistance
Lung cancer
Metastases
Non-coding RNA
Physiology
Preservation
Preservatives
Signal transduction
Transcription
Vascular endothelial growth factor
Wound healing
title lncRNA MALAT1 Accelerates Wound Healing of Diabetic Mice Transfused with Modified Autologous Blood via the HIF-1α Signaling Pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=lncRNA%20MALAT1%20Accelerates%20Wound%20Healing%20of%20Diabetic%20Mice%20Transfused%20with%20Modified%20Autologous%20Blood%20via%20the%20HIF-1%CE%B1%20Signaling%20Pathway&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Liu,%20Xiao-Qian&rft.date=2019-09-06&rft.volume=17&rft.spage=504&rft.epage=515&rft.pages=504-515&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1016/j.omtn.2019.05.020&rft_dat=%3Cproquest_doaj_%3E2265773898%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d360t-6c05220e9f4a9955bc600d20ab9df9cff0cf5208704a236f367e991bd93441aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2308402955&rft_id=info:pmid/31344658&rfr_iscdi=true