Loading…

Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells

We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF 4 /O 2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.7336-9, Article 7336
Main Authors: Cheon, See-Eun, Lee, Hyeon-seung, Choi, Jihye, Jeong, Ah Reum, Lee, Taek Sung, Jeong, Doo Seok, Lee, Kyeong-Seok, Lee, Wook-Seong, Kim, Won Mok, Lee, Heon, Kim, Inho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823
cites cdi_FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823
container_end_page 9
container_issue 1
container_start_page 7336
container_title Scientific reports
container_volume 7
creator Cheon, See-Eun
Lee, Hyeon-seung
Choi, Jihye
Jeong, Ah Reum
Lee, Taek Sung
Jeong, Doo Seok
Lee, Kyeong-Seok
Lee, Wook-Seong
Kim, Won Mok
Lee, Heon
Kim, Inho
description We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF 4 /O 2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiN x antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.
doi_str_mv 10.1038/s41598-017-07463-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d3d206703b924c93afa4cc6796aedb4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d3d206703b924c93afa4cc6796aedb4d</doaj_id><sourcerecordid>1957150559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpacI2f6CHIujZjT4t6VIooWkDgR7ansVYktdaHMuV7ML--6pxEjaH6DJi5p1nZngRek_JJ0q4viyCSqMbQlVDlGh5o16hc0aEbBhn7PXJ_wxdlHIg9UlmBDVv0RnTShmi1DkarqHL0cES04RTj2fI0KUxOvwz4gmmVJa8umXNoeDuuGXmIeSAx7gMaZ9hHo4YJo_jUjDM8_gI61PGJY2QsQvjWN6hNz2MJVw8xB36ff3119X35vbHt5urL7eNk4IsjTFEe6kZ50wGIxxIqjm0ui4cul5SI73mjFdxkFzyPrCWByUU1W0t1L4dutm4PsHBzjneQT7aBNHeJ1LeW8hLdGOwnntGWkV4Z5hwhkMPwrlWmRaC74SvrM8ba167u-BdmJYM4zPo88oUB7tPf62UQqgK3qGPD4Cc_qyhLPaQ1jzV-229RFFJpDRVxTaVy6mUHPqnCZTY_2bbzWxbzbb3ZltVmz6c7vbU8mhtFfBNUGpp2od8Mvtl7D_bPrXx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957150559</pqid></control><display><type>article</type><title>Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cheon, See-Eun ; Lee, Hyeon-seung ; Choi, Jihye ; Jeong, Ah Reum ; Lee, Taek Sung ; Jeong, Doo Seok ; Lee, Kyeong-Seok ; Lee, Wook-Seong ; Kim, Won Mok ; Lee, Heon ; Kim, Inho</creator><creatorcontrib>Cheon, See-Eun ; Lee, Hyeon-seung ; Choi, Jihye ; Jeong, Ah Reum ; Lee, Taek Sung ; Jeong, Doo Seok ; Lee, Kyeong-Seok ; Lee, Wook-Seong ; Kim, Won Mok ; Lee, Heon ; Kim, Inho</creatorcontrib><description>We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF 4 /O 2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiN x antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-07463-7</identifier><identifier>PMID: 28779077</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/301/299/946 ; 639/624/399/354 ; Efficiency ; Fabrication ; Humanities and Social Sciences ; Lithography ; multidisciplinary ; Organic solvents ; Photovoltaic cells ; Science ; Science (multidisciplinary) ; Silica ; Solar cells ; Solvents</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7336-9, Article 7336</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823</citedby><cites>FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823</cites><orcidid>0000-0003-1964-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957150559/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957150559?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28779077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheon, See-Eun</creatorcontrib><creatorcontrib>Lee, Hyeon-seung</creatorcontrib><creatorcontrib>Choi, Jihye</creatorcontrib><creatorcontrib>Jeong, Ah Reum</creatorcontrib><creatorcontrib>Lee, Taek Sung</creatorcontrib><creatorcontrib>Jeong, Doo Seok</creatorcontrib><creatorcontrib>Lee, Kyeong-Seok</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><creatorcontrib>Kim, Won Mok</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Kim, Inho</creatorcontrib><title>Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF 4 /O 2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiN x antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.</description><subject>142/126</subject><subject>639/301/299/946</subject><subject>639/624/399/354</subject><subject>Efficiency</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Lithography</subject><subject>multidisciplinary</subject><subject>Organic solvents</subject><subject>Photovoltaic cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silica</subject><subject>Solar cells</subject><subject>Solvents</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1r3DAQhkVpacI2f6CHIujZjT4t6VIooWkDgR7ansVYktdaHMuV7ML--6pxEjaH6DJi5p1nZngRek_JJ0q4viyCSqMbQlVDlGh5o16hc0aEbBhn7PXJ_wxdlHIg9UlmBDVv0RnTShmi1DkarqHL0cES04RTj2fI0KUxOvwz4gmmVJa8umXNoeDuuGXmIeSAx7gMaZ9hHo4YJo_jUjDM8_gI61PGJY2QsQvjWN6hNz2MJVw8xB36ff3119X35vbHt5urL7eNk4IsjTFEe6kZ50wGIxxIqjm0ui4cul5SI73mjFdxkFzyPrCWByUU1W0t1L4dutm4PsHBzjneQT7aBNHeJ1LeW8hLdGOwnntGWkV4Z5hwhkMPwrlWmRaC74SvrM8ba167u-BdmJYM4zPo88oUB7tPf62UQqgK3qGPD4Cc_qyhLPaQ1jzV-229RFFJpDRVxTaVy6mUHPqnCZTY_2bbzWxbzbb3ZltVmz6c7vbU8mhtFfBNUGpp2od8Mvtl7D_bPrXx</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Cheon, See-Eun</creator><creator>Lee, Hyeon-seung</creator><creator>Choi, Jihye</creator><creator>Jeong, Ah Reum</creator><creator>Lee, Taek Sung</creator><creator>Jeong, Doo Seok</creator><creator>Lee, Kyeong-Seok</creator><creator>Lee, Wook-Seong</creator><creator>Kim, Won Mok</creator><creator>Lee, Heon</creator><creator>Kim, Inho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid></search><sort><creationdate>20170804</creationdate><title>Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells</title><author>Cheon, See-Eun ; Lee, Hyeon-seung ; Choi, Jihye ; Jeong, Ah Reum ; Lee, Taek Sung ; Jeong, Doo Seok ; Lee, Kyeong-Seok ; Lee, Wook-Seong ; Kim, Won Mok ; Lee, Heon ; Kim, Inho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>142/126</topic><topic>639/301/299/946</topic><topic>639/624/399/354</topic><topic>Efficiency</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Lithography</topic><topic>multidisciplinary</topic><topic>Organic solvents</topic><topic>Photovoltaic cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silica</topic><topic>Solar cells</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheon, See-Eun</creatorcontrib><creatorcontrib>Lee, Hyeon-seung</creatorcontrib><creatorcontrib>Choi, Jihye</creatorcontrib><creatorcontrib>Jeong, Ah Reum</creatorcontrib><creatorcontrib>Lee, Taek Sung</creatorcontrib><creatorcontrib>Jeong, Doo Seok</creatorcontrib><creatorcontrib>Lee, Kyeong-Seok</creatorcontrib><creatorcontrib>Lee, Wook-Seong</creatorcontrib><creatorcontrib>Kim, Won Mok</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Kim, Inho</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheon, See-Eun</au><au>Lee, Hyeon-seung</au><au>Choi, Jihye</au><au>Jeong, Ah Reum</au><au>Lee, Taek Sung</au><au>Jeong, Doo Seok</au><au>Lee, Kyeong-Seok</au><au>Lee, Wook-Seong</au><au>Kim, Won Mok</au><au>Lee, Heon</au><au>Kim, Inho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-04</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7336</spage><epage>9</epage><pages>7336-9</pages><artnum>7336</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF 4 /O 2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiN x antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28779077</pmid><doi>10.1038/s41598-017-07463-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1964-3746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.7336-9, Article 7336
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d3d206703b924c93afa4cc6796aedb4d
source Publicly Available Content Database; PubMed Central(OpenAccess); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 142/126
639/301/299/946
639/624/399/354
Efficiency
Fabrication
Humanities and Social Sciences
Lithography
multidisciplinary
Organic solvents
Photovoltaic cells
Science
Science (multidisciplinary)
Silica
Solar cells
Solvents
title Fabrication of parabolic Si nanostructures by nanosphere lithography and its application for solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20parabolic%20Si%20nanostructures%20by%20nanosphere%20lithography%20and%20its%20application%20for%20solar%20cells&rft.jtitle=Scientific%20reports&rft.au=Cheon,%20See-Eun&rft.date=2017-08-04&rft.volume=7&rft.issue=1&rft.spage=7336&rft.epage=9&rft.pages=7336-9&rft.artnum=7336&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-07463-7&rft_dat=%3Cproquest_doaj_%3E1957150559%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9908d5823325e94ca5183a68877ebf5195d8323c54e5353fe263e747186d83823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957150559&rft_id=info:pmid/28779077&rfr_iscdi=true