Loading…

Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells

Facile proton transport and restricted methanol passage through PC-PVA/s-TiO2 hybrid nanocomposite membranes. [Display omitted] Biocomposite materials are highly attractive for research and industrial application due to biodegradability, nontoxicity and sustainability. Solid electrolyte membrane der...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2020-01, Vol.13 (1), p.2024-2040
Main Authors: Mohanapriya, S., Rambabu, G., Bhat, S.D., Raj, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243
cites cdi_FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243
container_end_page 2040
container_issue 1
container_start_page 2024
container_title Arabian journal of chemistry
container_volume 13
creator Mohanapriya, S.
Rambabu, G.
Bhat, S.D.
Raj, V.
description Facile proton transport and restricted methanol passage through PC-PVA/s-TiO2 hybrid nanocomposite membranes. [Display omitted] Biocomposite materials are highly attractive for research and industrial application due to biodegradability, nontoxicity and sustainability. Solid electrolyte membrane derived from biodegradable materials broadens scope of using sustainable polymers and is easily disposable at the end of life cycle. In this study, Pectin (PC) is blended with polyvinyl alcohol (PVA) in order to fabricate new class of hybrid nanocomposite followed by addition of sulfonated titanium dioxide (s-TiO2) nanoparticles as inorganic proton conducting material. PVA and PC is in situ cross-linked using dual cross-linker comprising a mixture of sulfosuccinic acid and glutaraldehyde followed by solvent casting. Rheological studies with polymer solutions are conducted to study alignment and disentanglement of polymer chains at molecular level. It is shown that rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains has been formulated by blending PVA with PC. PC-PVA blends with a flexible polymeric network which is appropriate to disperse rigid s-TiO2 nanoparticles resulting in improved proton conductivity and restricted methanol permeability. With further enriched proton conductivity by the presence of s-TiO2 nanoparticles, fabricated PC-PVA/s-TiO2 hybrid nanocomposite membrane exhibit a peakpower density of 27 mW/cm2 at 70 °C in DMFCs.
doi_str_mv 10.1016/j.arabjc.2018.03.001
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d3dddc7a63444e3eabaeef0e0469193a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878535218300595</els_id><doaj_id>oai_doaj_org_article_d3dddc7a63444e3eabaeef0e0469193a</doaj_id><sourcerecordid>S1878535218300595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYsoOI6-gYu8wNSkSdt0I8jgz4CgC124CrfJzZjSNkNShXl7M1Zm6SrhcM5H8mXZNaM5o6y66XII0HY6LyiTOeU5pewkWzBZy1XJ6-b0eC-L8-wixo7SmlJeLbKPV9STG0kLEQ0ZYfTaDzsf3YRkwKENMGIkEMk2II4E-1QPvt9PKbU-EONCSlJ1-kzbntgv7InGvo-X2ZmFPuLV37nM3h_u39ZPq-eXx8367nmlBZPTiotG2pZjazWTAhhIK2RlbVNwLHnBjMWyxdpwWaRCqStRUqmlZGVjoSwEX2abmWs8dGoX3ABhrzw49Rv4sFUQJqd7VIYbY3QNFRdCIEdoAdFSpKJqWMMhscTM0sHHGNAeeYyqg2rVqVm1OqhWlKukOs1u5xmmf347DCpqh6PG2U56iPsf8ANZYYru</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells</title><source>Elsevier ScienceDirect Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mohanapriya, S. ; Rambabu, G. ; Bhat, S.D. ; Raj, V.</creator><creatorcontrib>Mohanapriya, S. ; Rambabu, G. ; Bhat, S.D. ; Raj, V.</creatorcontrib><description>Facile proton transport and restricted methanol passage through PC-PVA/s-TiO2 hybrid nanocomposite membranes. [Display omitted] Biocomposite materials are highly attractive for research and industrial application due to biodegradability, nontoxicity and sustainability. Solid electrolyte membrane derived from biodegradable materials broadens scope of using sustainable polymers and is easily disposable at the end of life cycle. In this study, Pectin (PC) is blended with polyvinyl alcohol (PVA) in order to fabricate new class of hybrid nanocomposite followed by addition of sulfonated titanium dioxide (s-TiO2) nanoparticles as inorganic proton conducting material. PVA and PC is in situ cross-linked using dual cross-linker comprising a mixture of sulfosuccinic acid and glutaraldehyde followed by solvent casting. Rheological studies with polymer solutions are conducted to study alignment and disentanglement of polymer chains at molecular level. It is shown that rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains has been formulated by blending PVA with PC. PC-PVA blends with a flexible polymeric network which is appropriate to disperse rigid s-TiO2 nanoparticles resulting in improved proton conductivity and restricted methanol permeability. With further enriched proton conductivity by the presence of s-TiO2 nanoparticles, fabricated PC-PVA/s-TiO2 hybrid nanocomposite membrane exhibit a peakpower density of 27 mW/cm2 at 70 °C in DMFCs.</description><identifier>ISSN: 1878-5352</identifier><identifier>EISSN: 1878-5379</identifier><identifier>DOI: 10.1016/j.arabjc.2018.03.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hydrophobic/hydrophilic domains ; Methanol permeation ; Pectin ; Polyelectrolytes</subject><ispartof>Arabian journal of chemistry, 2020-01, Vol.13 (1), p.2024-2040</ispartof><rights>2018 King Saud University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243</citedby><cites>FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1878535218300595$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Mohanapriya, S.</creatorcontrib><creatorcontrib>Rambabu, G.</creatorcontrib><creatorcontrib>Bhat, S.D.</creatorcontrib><creatorcontrib>Raj, V.</creatorcontrib><title>Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells</title><title>Arabian journal of chemistry</title><description>Facile proton transport and restricted methanol passage through PC-PVA/s-TiO2 hybrid nanocomposite membranes. [Display omitted] Biocomposite materials are highly attractive for research and industrial application due to biodegradability, nontoxicity and sustainability. Solid electrolyte membrane derived from biodegradable materials broadens scope of using sustainable polymers and is easily disposable at the end of life cycle. In this study, Pectin (PC) is blended with polyvinyl alcohol (PVA) in order to fabricate new class of hybrid nanocomposite followed by addition of sulfonated titanium dioxide (s-TiO2) nanoparticles as inorganic proton conducting material. PVA and PC is in situ cross-linked using dual cross-linker comprising a mixture of sulfosuccinic acid and glutaraldehyde followed by solvent casting. Rheological studies with polymer solutions are conducted to study alignment and disentanglement of polymer chains at molecular level. It is shown that rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains has been formulated by blending PVA with PC. PC-PVA blends with a flexible polymeric network which is appropriate to disperse rigid s-TiO2 nanoparticles resulting in improved proton conductivity and restricted methanol permeability. With further enriched proton conductivity by the presence of s-TiO2 nanoparticles, fabricated PC-PVA/s-TiO2 hybrid nanocomposite membrane exhibit a peakpower density of 27 mW/cm2 at 70 °C in DMFCs.</description><subject>Hydrophobic/hydrophilic domains</subject><subject>Methanol permeation</subject><subject>Pectin</subject><subject>Polyelectrolytes</subject><issn>1878-5352</issn><issn>1878-5379</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1KxDAUhYsoOI6-gYu8wNSkSdt0I8jgz4CgC124CrfJzZjSNkNShXl7M1Zm6SrhcM5H8mXZNaM5o6y66XII0HY6LyiTOeU5pewkWzBZy1XJ6-b0eC-L8-wixo7SmlJeLbKPV9STG0kLEQ0ZYfTaDzsf3YRkwKENMGIkEMk2II4E-1QPvt9PKbU-EONCSlJ1-kzbntgv7InGvo-X2ZmFPuLV37nM3h_u39ZPq-eXx8367nmlBZPTiotG2pZjazWTAhhIK2RlbVNwLHnBjMWyxdpwWaRCqStRUqmlZGVjoSwEX2abmWs8dGoX3ABhrzw49Rv4sFUQJqd7VIYbY3QNFRdCIEdoAdFSpKJqWMMhscTM0sHHGNAeeYyqg2rVqVm1OqhWlKukOs1u5xmmf347DCpqh6PG2U56iPsf8ANZYYru</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Mohanapriya, S.</creator><creator>Rambabu, G.</creator><creator>Bhat, S.D.</creator><creator>Raj, V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202001</creationdate><title>Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells</title><author>Mohanapriya, S. ; Rambabu, G. ; Bhat, S.D. ; Raj, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Hydrophobic/hydrophilic domains</topic><topic>Methanol permeation</topic><topic>Pectin</topic><topic>Polyelectrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanapriya, S.</creatorcontrib><creatorcontrib>Rambabu, G.</creatorcontrib><creatorcontrib>Bhat, S.D.</creatorcontrib><creatorcontrib>Raj, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Arabian journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanapriya, S.</au><au>Rambabu, G.</au><au>Bhat, S.D.</au><au>Raj, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells</atitle><jtitle>Arabian journal of chemistry</jtitle><date>2020-01</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>2024</spage><epage>2040</epage><pages>2024-2040</pages><issn>1878-5352</issn><eissn>1878-5379</eissn><abstract>Facile proton transport and restricted methanol passage through PC-PVA/s-TiO2 hybrid nanocomposite membranes. [Display omitted] Biocomposite materials are highly attractive for research and industrial application due to biodegradability, nontoxicity and sustainability. Solid electrolyte membrane derived from biodegradable materials broadens scope of using sustainable polymers and is easily disposable at the end of life cycle. In this study, Pectin (PC) is blended with polyvinyl alcohol (PVA) in order to fabricate new class of hybrid nanocomposite followed by addition of sulfonated titanium dioxide (s-TiO2) nanoparticles as inorganic proton conducting material. PVA and PC is in situ cross-linked using dual cross-linker comprising a mixture of sulfosuccinic acid and glutaraldehyde followed by solvent casting. Rheological studies with polymer solutions are conducted to study alignment and disentanglement of polymer chains at molecular level. It is shown that rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains has been formulated by blending PVA with PC. PC-PVA blends with a flexible polymeric network which is appropriate to disperse rigid s-TiO2 nanoparticles resulting in improved proton conductivity and restricted methanol permeability. With further enriched proton conductivity by the presence of s-TiO2 nanoparticles, fabricated PC-PVA/s-TiO2 hybrid nanocomposite membrane exhibit a peakpower density of 27 mW/cm2 at 70 °C in DMFCs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.arabjc.2018.03.001</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-5352
ispartof Arabian journal of chemistry, 2020-01, Vol.13 (1), p.2024-2040
issn 1878-5352
1878-5379
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d3dddc7a63444e3eabaeef0e0469193a
source Elsevier ScienceDirect Journals; Free Full-Text Journals in Chemistry
subjects Hydrophobic/hydrophilic domains
Methanol permeation
Pectin
Polyelectrolytes
title Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pectin%20based%20nanocomposite%20membranes%20as%20green%20electrolytes%20for%20direct%20methanol%20fuel%20cells&rft.jtitle=Arabian%20journal%20of%20chemistry&rft.au=Mohanapriya,%20S.&rft.date=2020-01&rft.volume=13&rft.issue=1&rft.spage=2024&rft.epage=2040&rft.pages=2024-2040&rft.issn=1878-5352&rft.eissn=1878-5379&rft_id=info:doi/10.1016/j.arabjc.2018.03.001&rft_dat=%3Celsevier_doaj_%3ES1878535218300595%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-3498fb3ebfc184a1a8f486ff923e5321dfe5be7d382c185c64508c88159fa5243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true