Loading…

Decoding lip language using triboelectric sensors with deep learning

Lip language is an effective method of voice-off communication in daily life for people with vocal cord lesions and laryngeal and lingual injuries without occupying the hands. Collection and interpretation of lip language is challenging. Here, we propose the concept of a novel lip-language decoding...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-03, Vol.13 (1), p.1401-1401, Article 1401
Main Authors: Lu, Yijia, Tian, Han, Cheng, Jia, Zhu, Fei, Liu, Bin, Wei, Shanshan, Ji, Linhong, Wang, Zhong Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lip language is an effective method of voice-off communication in daily life for people with vocal cord lesions and laryngeal and lingual injuries without occupying the hands. Collection and interpretation of lip language is challenging. Here, we propose the concept of a novel lip-language decoding system with self-powered, low-cost, contact and flexible triboelectric sensors and a well-trained dilated recurrent neural network model based on prototype learning. The structural principle and electrical properties of the flexible sensors are measured and analysed. Lip motions for selected vowels, words, phrases, silent speech and voice speech are collected and compared. The prototype learning model reaches a test accuracy of 94.5% in training 20 classes with 100 samples each. The applications, such as identity recognition to unlock a gate, directional control of a toy car and lip-motion to speech conversion, work well and demonstrate great feasibility and potential. Our work presents a promising way to help people lacking a voice live a convenient life with barrier-free communication and boost their happiness, enriches the diversity of lip-language translation systems and will have potential value in many applications. Lip-language decoding systems are a promising technology to help people lacking a voice live a convenient life with barrier-free communication. Here, authors propose a concept of such system integrating self-powered triboelectric sensors and a well-trained dilated RNN model based on prototype learning.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29083-0