Loading…

Production and characterization of alginate microparticles obtained by ionic gelation and electrostatic adsorption of concentrated soy protein

Microencapsulation is used for protection and release of bioactive compounds. Combination of encapsulation methods allows the production of matrices with better technological properties compared to the application of one of the methods alone. Use of ionic gelation produces porous microparticles, and...

Full description

Saved in:
Bibliographic Details
Published in:Ciência rural 2018-01, Vol.48 (12)
Main Authors: Silverio, Gabriela Barros, Sakanaka, Lyssa Setsuko, Alvim, Izabela Dutra, Shirai, Marianne Ayumi, Grosso, Carlos Raimundo Ferreira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microencapsulation is used for protection and release of bioactive compounds. Combination of encapsulation methods allows the production of matrices with better technological properties compared to the application of one of the methods alone. Use of ionic gelation produces porous microparticles, and coating it with a protein, by electrostatic interaction, may contribute to a better protection of the active compound. The objective of the research was to produce alginate microparticles (AG) through ionic gelation and to coat them with soluble protein from soy protein concentrate. Two factors were studied, calcium concentration during ionic gelation (0.8, 1.6 and 2.4% w/w) and pH (3.5 and 7.0) of the protein solution for electrostatic interaction. Zeta potential (ZP) of biopolymers and microparticles were determined. Microparticles were characterized according to its morphology, average size and size distribution, as well as protein adsorption. Microparticles presented (154-334μm) multinuclear distribution of active compound, continuous and smooth surface, with a great standard deviation considering average size. The calcium concentration did not influence the protein adsorption on microparticles.The pH used in protein adsorption showed significant effect, with higher adsorption occurring at pH 3.5 (6.5 to 6.7% w/w, dry basis,db, of adsorbed protein) compared to pH 7.0 (pKa AG
ISSN:0103-8478
1678-4596
1678-4596
DOI:10.1590/0103-8478cr20180637