Loading…

MWCNT Decorated Rich N-Doped Porous Carbon with Tunable Porosity for CO2 Capture

Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanot...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-06, Vol.26 (11), p.3451
Main Authors: Xiong, Yuanjie, Wang, Yuan, Jiang, Housheng, Yuan, Shaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanotubes (MWCNTs), and then activated with KOH. The porosity of such carbon materials can be tuned by rational introduction of MWCNTs, adjusting the amount of KOH, and controlling the pyrolysis temperature. The obtained M/P-0.1-600-2 adsorbent possesses a high surface area of 1017 m2 g−1 and a high N content of 3.11 at%. Such M/P-0.1-600-2 adsorbent delivers an enhanced CO2 capture capability of 2.63 mmol g−1 at 298.15 K and five bars, which is 14 times higher than that of pristine MWCNTs (0.18 mmol g−1). In addition, such M/P-0.1-600-2 adsorbent performs with a good stability, with almost no decay in a successive five adsorption-desorption cycles.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26113451