Loading…
Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity
Forest ecosystem plays a vital role in the global carbon cycle and maintaining climate stability. However, how net primary productivity (NPP) dynamics of different stand ages of forest respond to climatic change and residual (being other climate factors or human activities) still remain unclear. In...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-09, Vol.13 (18), p.3746 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forest ecosystem plays a vital role in the global carbon cycle and maintaining climate stability. However, how net primary productivity (NPP) dynamics of different stand ages of forest respond to climatic change and residual (being other climate factors or human activities) still remain unclear. In this study, firstly, forests are divided into two categories based on their stand age: forests appeared before appeared before the research period (Fold), and forests appeared during the research period (Fnew). Secondly, we improved a quantitative method of basic partial derivatives to disentangle the relative contributions of climatic factors, other climate factors, and human activities to the NPP of Fold and Fnew. Then, different scenarios were simulated to identify the dominant drivers for forest restoration and degradation. In this study, we hypothesized the residual of Fold was other climate factors rather than human activities. Our results revealed that from 2000 to 2019, Fold and Fnew of NPP in Yangtze River Basin showed a significant increment trend and precipitation was the major positive contributor among all of the climatic factors. We found that, in Fold, climate change and other climate factors contributed 9.77% and 28.33%, respectively, in explaining NPP. This finding unsupported our initial hypothesis and implied that residuals should be human activities for Fold. Furthermore, we found that human activities dominate either restoration or degradation of Fnew. This result may be due to the attenuated human disturbances and strengthened forest management, such as ecological policies, forest tending, closing the land for reforestation, etc. Therefore, based on disentangling the two types of factors, we concluded that human activities govern the forest change, and imply that the environment-friendly forest managements may favorite to improving the forest NPP against the impacts of climate change. Thus, effective measures and policies are suggested implement in controlling forest degradation in facing climate change. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13183746 |