Loading…

Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations

Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-01, Vol.15 (1), p.80
Main Authors: Zhong, Jianxin, Xie, Xuejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823
container_end_page
container_issue 1
container_start_page 80
container_title Symmetry (Basel)
container_volume 15
creator Zhong, Jianxin
Xie, Xuejun
description Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1).
doi_str_mv 10.3390/sym15010080
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752148834</galeid><doaj_id>oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97</doaj_id><sourcerecordid>A752148834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgh24g9U4ogK-WriHtEYGxIIDnCOUjfZOrUNJJ1E_z2BITT7YMuyH1uvs-ySkhvOK3Ibp56WhBIC5Cg7Y0TxAqpKHB_kp9ksxi1JVpJSSHKWrZadr02XL77aONoBbT76fG52uJny1-Drzva58yGn9_mzWQ929JupCb6ZBtO3GPPF586MrR_iRXbiTBft7C-eZ-8Pi7f5qnh6WT7O754K5JKOBdbSMpTOCsqgqStJSuSsIqVsUBKqDICthFXIkDkBKJxCVQtFSqitBMbPs8c9t_Fmqz9C25swaW9a_VvwYa1NGFvsrG4EMwlQG0AujGoAQSGAIzXQtEUl1tWe9RH8587GUW_9LgzpfM2UVAyqpFTqutl3rU2CtoPzYzCYvLFJAj9Y16b6nSoZFQBcpIHr_QAGH2Ow7v9MSvTPq_TBq_g3HOqFCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767289000</pqid></control><display><type>article</type><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><source>Publicly Available Content (ProQuest)</source><creator>Zhong, Jianxin ; Xie, Xuejun</creator><creatorcontrib>Zhong, Jianxin ; Xie, Xuejun</creatorcontrib><description>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b&gt;1).</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15010080</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cauchy problem ; Cauchy problems ; Compressibility ; compressible MHD equations ; Fluid dynamics ; Gases ; global strong solution ; Heat conductivity ; Magnetic fields ; Magnetohydrodynamics ; Molecular biology ; Temperature dependence ; temperature-dependent heat conductivity ; Thermal conductivity</subject><ispartof>Symmetry (Basel), 2023-01, Vol.15 (1), p.80</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767289000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767289000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Zhong, Jianxin</creatorcontrib><creatorcontrib>Xie, Xuejun</creatorcontrib><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><title>Symmetry (Basel)</title><description>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b&gt;1).</description><subject>Cauchy problem</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>compressible MHD equations</subject><subject>Fluid dynamics</subject><subject>Gases</subject><subject>global strong solution</subject><subject>Heat conductivity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Molecular biology</subject><subject>Temperature dependence</subject><subject>temperature-dependent heat conductivity</subject><subject>Thermal conductivity</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgh24g9U4ogK-WriHtEYGxIIDnCOUjfZOrUNJJ1E_z2BITT7YMuyH1uvs-ySkhvOK3Ibp56WhBIC5Cg7Y0TxAqpKHB_kp9ksxi1JVpJSSHKWrZadr02XL77aONoBbT76fG52uJny1-Drzva58yGn9_mzWQ929JupCb6ZBtO3GPPF586MrR_iRXbiTBft7C-eZ-8Pi7f5qnh6WT7O754K5JKOBdbSMpTOCsqgqStJSuSsIqVsUBKqDICthFXIkDkBKJxCVQtFSqitBMbPs8c9t_Fmqz9C25swaW9a_VvwYa1NGFvsrG4EMwlQG0AujGoAQSGAIzXQtEUl1tWe9RH8587GUW_9LgzpfM2UVAyqpFTqutl3rU2CtoPzYzCYvLFJAj9Y16b6nSoZFQBcpIHr_QAGH2Ow7v9MSvTPq_TBq_g3HOqFCA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhong, Jianxin</creator><creator>Xie, Xuejun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20230101</creationdate><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><author>Zhong, Jianxin ; Xie, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problem</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>compressible MHD equations</topic><topic>Fluid dynamics</topic><topic>Gases</topic><topic>global strong solution</topic><topic>Heat conductivity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Molecular biology</topic><topic>Temperature dependence</topic><topic>temperature-dependent heat conductivity</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Jianxin</creatorcontrib><creatorcontrib>Xie, Xuejun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Jianxin</au><au>Xie, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>80</spage><pages>80-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b&gt;1).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15010080</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2023-01, Vol.15 (1), p.80
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97
source Publicly Available Content (ProQuest)
subjects Cauchy problem
Cauchy problems
Compressibility
compressible MHD equations
Fluid dynamics
Gases
global strong solution
Heat conductivity
Magnetic fields
Magnetohydrodynamics
Molecular biology
Temperature dependence
temperature-dependent heat conductivity
Thermal conductivity
title Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Existence%20to%20Cauchy%20Problem%20for%201D%20Magnetohydrodynamics%20Equations&rft.jtitle=Symmetry%20(Basel)&rft.au=Zhong,%20Jianxin&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=80&rft.pages=80-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15010080&rft_dat=%3Cgale_doaj_%3EA752148834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767289000&rft_id=info:pmid/&rft_galeid=A752148834&rfr_iscdi=true