Loading…
Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations
Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent...
Saved in:
Published in: | Symmetry (Basel) 2023-01, Vol.15 (1), p.80 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823 |
container_end_page | |
container_issue | 1 |
container_start_page | 80 |
container_title | Symmetry (Basel) |
container_volume | 15 |
creator | Zhong, Jianxin Xie, Xuejun |
description | Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1). |
doi_str_mv | 10.3390/sym15010080 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752148834</galeid><doaj_id>oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97</doaj_id><sourcerecordid>A752148834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgh24g9U4ogK-WriHtEYGxIIDnCOUjfZOrUNJJ1E_z2BITT7YMuyH1uvs-ySkhvOK3Ibp56WhBIC5Cg7Y0TxAqpKHB_kp9ksxi1JVpJSSHKWrZadr02XL77aONoBbT76fG52uJny1-Drzva58yGn9_mzWQ929JupCb6ZBtO3GPPF586MrR_iRXbiTBft7C-eZ-8Pi7f5qnh6WT7O754K5JKOBdbSMpTOCsqgqStJSuSsIqVsUBKqDICthFXIkDkBKJxCVQtFSqitBMbPs8c9t_Fmqz9C25swaW9a_VvwYa1NGFvsrG4EMwlQG0AujGoAQSGAIzXQtEUl1tWe9RH8587GUW_9LgzpfM2UVAyqpFTqutl3rU2CtoPzYzCYvLFJAj9Y16b6nSoZFQBcpIHr_QAGH2Ow7v9MSvTPq_TBq_g3HOqFCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767289000</pqid></control><display><type>article</type><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><source>Publicly Available Content (ProQuest)</source><creator>Zhong, Jianxin ; Xie, Xuejun</creator><creatorcontrib>Zhong, Jianxin ; Xie, Xuejun</creatorcontrib><description>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1).</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15010080</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cauchy problem ; Cauchy problems ; Compressibility ; compressible MHD equations ; Fluid dynamics ; Gases ; global strong solution ; Heat conductivity ; Magnetic fields ; Magnetohydrodynamics ; Molecular biology ; Temperature dependence ; temperature-dependent heat conductivity ; Thermal conductivity</subject><ispartof>Symmetry (Basel), 2023-01, Vol.15 (1), p.80</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767289000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767289000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Zhong, Jianxin</creatorcontrib><creatorcontrib>Xie, Xuejun</creatorcontrib><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><title>Symmetry (Basel)</title><description>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1).</description><subject>Cauchy problem</subject><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>compressible MHD equations</subject><subject>Fluid dynamics</subject><subject>Gases</subject><subject>global strong solution</subject><subject>Heat conductivity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Molecular biology</subject><subject>Temperature dependence</subject><subject>temperature-dependent heat conductivity</subject><subject>Thermal conductivity</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgh24g9U4ogK-WriHtEYGxIIDnCOUjfZOrUNJJ1E_z2BITT7YMuyH1uvs-ySkhvOK3Ibp56WhBIC5Cg7Y0TxAqpKHB_kp9ksxi1JVpJSSHKWrZadr02XL77aONoBbT76fG52uJny1-Drzva58yGn9_mzWQ929JupCb6ZBtO3GPPF586MrR_iRXbiTBft7C-eZ-8Pi7f5qnh6WT7O754K5JKOBdbSMpTOCsqgqStJSuSsIqVsUBKqDICthFXIkDkBKJxCVQtFSqitBMbPs8c9t_Fmqz9C25swaW9a_VvwYa1NGFvsrG4EMwlQG0AujGoAQSGAIzXQtEUl1tWe9RH8587GUW_9LgzpfM2UVAyqpFTqutl3rU2CtoPzYzCYvLFJAj9Y16b6nSoZFQBcpIHr_QAGH2Ow7v9MSvTPq_TBq_g3HOqFCA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhong, Jianxin</creator><creator>Xie, Xuejun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20230101</creationdate><title>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</title><author>Zhong, Jianxin ; Xie, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problem</topic><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>compressible MHD equations</topic><topic>Fluid dynamics</topic><topic>Gases</topic><topic>global strong solution</topic><topic>Heat conductivity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Molecular biology</topic><topic>Temperature dependence</topic><topic>temperature-dependent heat conductivity</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Jianxin</creatorcontrib><creatorcontrib>Xie, Xuejun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Jianxin</au><au>Xie, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>80</spage><pages>80-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Magnetohydrodynamics are widely used in medicine and biotechnology, such as drug targeting, molecular biology, cell isolation and purification. In this paper, we prove the existence of a global strong solution to the one-dimensional compressible magnetohydrodynamics system with temperature-dependent heat conductivity in unbounded domains and a large initial value by the Lagrangian symmetry transformation, when the viscosity μ is constant and the heat conductivity κ, which depends on the temperature, satisfies κ=κ¯θb(b>1).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15010080</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2023-01, Vol.15 (1), p.80 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d42ac4fba8c34a7d8c87c88f0b818e97 |
source | Publicly Available Content (ProQuest) |
subjects | Cauchy problem Cauchy problems Compressibility compressible MHD equations Fluid dynamics Gases global strong solution Heat conductivity Magnetic fields Magnetohydrodynamics Molecular biology Temperature dependence temperature-dependent heat conductivity Thermal conductivity |
title | Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Existence%20to%20Cauchy%20Problem%20for%201D%20Magnetohydrodynamics%20Equations&rft.jtitle=Symmetry%20(Basel)&rft.au=Zhong,%20Jianxin&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=80&rft.pages=80-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15010080&rft_dat=%3Cgale_doaj_%3EA752148834%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-cb6e2c6fe4128db9605c329056dc6017a88e94e7c2c2f48c4f7c7b47058be6823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767289000&rft_id=info:pmid/&rft_galeid=A752148834&rfr_iscdi=true |