Loading…
A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression
Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an...
Saved in:
Published in: | Scientific data 2021-08, Vol.8 (1), p.214-11, Article 214 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 214 |
container_title | Scientific data |
container_volume | 8 |
creator | Rohr, Michael Beardsley, Jordan Nakkina, Sai Preethi Zhu, Xiang Aljabban, Jihad Hadley, Dexter Altomare, Deborah |
description | Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.
Measurement(s)
transcriptome • colorectal cancer
Technology Type(s)
microarray
Factor Type(s)
gene expression
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14589006 |
doi_str_mv | 10.1038/s41597-021-00998-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061</doaj_id><sourcerecordid>2560160373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEaqu2L8ACRWIdGP8lzgapqihUqsSGrq2J7QRfOXGwfZHu2-PbtKXdsPJ45sw3ozlV9Z7AJwJMfk6ciL5rgJIGoO9lI95UZxQEbThv2dsX8Wl1mdIOAAjjIDo4qU4ZZ5KU-KxarurZxsmaenY6BowRDyWTsTGYMdlcjyHWOeKSdHRrdmFB7w_1GsPovFumWgcfotUZfb3YsHpM87FnxqO2xsUctVO0KZX_RfVuRJ_s5eN7Xt3ffP15_b25-_Ht9vrqrtGCQ25GTXoqBEpGLW973osOiemHjlprjBQtG_gg2GC5aUH3gnWIRMqBUNMx01J2Xt1uXBNwp9boZowHFdCph0SIk8KYnfZWGU4NUFPotOPAOwm9BpSagGwRWlJYXzbWuh9ma7Rdyjn8K-jryuJ-qSn8UZIJWY5cAB8fATH83tuU1S7sY7ljUlS0QFpgHSsquqmKDSlFOz5PIKCOlqvNclUsVw-WK1GaPrzc7bnlyeAiYJsgldIy2fhv9n-wfwG-0bkB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560160373</pqid></control><display><type>article</type><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</creator><creatorcontrib>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</creatorcontrib><description>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.
Measurement(s)
transcriptome • colorectal cancer
Technology Type(s)
microarray
Factor Type(s)
gene expression
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14589006</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-021-00998-5</identifier><identifier>PMID: 34381057</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2407 ; 631/67/69 ; Adenoma ; Adenoma - genetics ; Adenoma - pathology ; Aged ; Bayesian analysis ; Cell Transformation, Neoplastic - genetics ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - pathology ; Data Descriptor ; Datasets ; DNA microarrays ; Female ; Gene expression ; Gene Expression Profiling ; Humanities and Social Sciences ; Humans ; Male ; Metadata ; Middle Aged ; multidisciplinary ; Oligonucleotide Array Sequence Analysis ; Science ; Science (multidisciplinary) ; Transcription ; Transcriptome ; Transcriptomes ; Tumors</subject><ispartof>Scientific data, 2021-08, Vol.8 (1), p.214-11, Article 214</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</citedby><cites>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</cites><orcidid>0000-0002-2663-084X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2560160373/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2560160373?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34381057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohr, Michael</creatorcontrib><creatorcontrib>Beardsley, Jordan</creatorcontrib><creatorcontrib>Nakkina, Sai Preethi</creatorcontrib><creatorcontrib>Zhu, Xiang</creatorcontrib><creatorcontrib>Aljabban, Jihad</creatorcontrib><creatorcontrib>Hadley, Dexter</creatorcontrib><creatorcontrib>Altomare, Deborah</creatorcontrib><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.
Measurement(s)
transcriptome • colorectal cancer
Technology Type(s)
microarray
Factor Type(s)
gene expression
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14589006</description><subject>631/114/2407</subject><subject>631/67/69</subject><subject>Adenoma</subject><subject>Adenoma - genetics</subject><subject>Adenoma - pathology</subject><subject>Aged</subject><subject>Bayesian analysis</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Data Descriptor</subject><subject>Datasets</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Metadata</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Tumors</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSMEaqu2L8ACRWIdGP8lzgapqihUqsSGrq2J7QRfOXGwfZHu2-PbtKXdsPJ45sw3ozlV9Z7AJwJMfk6ciL5rgJIGoO9lI95UZxQEbThv2dsX8Wl1mdIOAAjjIDo4qU4ZZ5KU-KxarurZxsmaenY6BowRDyWTsTGYMdlcjyHWOeKSdHRrdmFB7w_1GsPovFumWgcfotUZfb3YsHpM87FnxqO2xsUctVO0KZX_RfVuRJ_s5eN7Xt3ffP15_b25-_Ht9vrqrtGCQ25GTXoqBEpGLW973osOiemHjlprjBQtG_gg2GC5aUH3gnWIRMqBUNMx01J2Xt1uXBNwp9boZowHFdCph0SIk8KYnfZWGU4NUFPotOPAOwm9BpSagGwRWlJYXzbWuh9ma7Rdyjn8K-jryuJ-qSn8UZIJWY5cAB8fATH83tuU1S7sY7ljUlS0QFpgHSsquqmKDSlFOz5PIKCOlqvNclUsVw-WK1GaPrzc7bnlyeAiYJsgldIy2fhv9n-wfwG-0bkB</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Rohr, Michael</creator><creator>Beardsley, Jordan</creator><creator>Nakkina, Sai Preethi</creator><creator>Zhu, Xiang</creator><creator>Aljabban, Jihad</creator><creator>Hadley, Dexter</creator><creator>Altomare, Deborah</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2663-084X</orcidid></search><sort><creationdate>20210811</creationdate><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><author>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/2407</topic><topic>631/67/69</topic><topic>Adenoma</topic><topic>Adenoma - genetics</topic><topic>Adenoma - pathology</topic><topic>Aged</topic><topic>Bayesian analysis</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Data Descriptor</topic><topic>Datasets</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Metadata</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohr, Michael</creatorcontrib><creatorcontrib>Beardsley, Jordan</creatorcontrib><creatorcontrib>Nakkina, Sai Preethi</creatorcontrib><creatorcontrib>Zhu, Xiang</creatorcontrib><creatorcontrib>Aljabban, Jihad</creatorcontrib><creatorcontrib>Hadley, Dexter</creatorcontrib><creatorcontrib>Altomare, Deborah</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohr, Michael</au><au>Beardsley, Jordan</au><au>Nakkina, Sai Preethi</au><au>Zhu, Xiang</au><au>Aljabban, Jihad</au><au>Hadley, Dexter</au><au>Altomare, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2021-08-11</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>214</spage><epage>11</epage><pages>214-11</pages><artnum>214</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types.
Measurement(s)
transcriptome • colorectal cancer
Technology Type(s)
microarray
Factor Type(s)
gene expression
Sample Characteristic - Organism
Homo sapiens
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.14589006</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34381057</pmid><doi>10.1038/s41597-021-00998-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2663-084X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-4463 |
ispartof | Scientific data, 2021-08, Vol.8 (1), p.214-11, Article 214 |
issn | 2052-4463 2052-4463 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061 |
source | Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/2407 631/67/69 Adenoma Adenoma - genetics Adenoma - pathology Aged Bayesian analysis Cell Transformation, Neoplastic - genetics Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - genetics Colorectal Neoplasms - pathology Data Descriptor Datasets DNA microarrays Female Gene expression Gene Expression Profiling Humanities and Social Sciences Humans Male Metadata Middle Aged multidisciplinary Oligonucleotide Array Sequence Analysis Science Science (multidisciplinary) Transcription Transcriptome Transcriptomes Tumors |
title | A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20merged%20microarray%20meta-dataset%20for%20transcriptionally%20profiling%20colorectal%20neoplasm%20formation%20and%20progression&rft.jtitle=Scientific%20data&rft.au=Rohr,%20Michael&rft.date=2021-08-11&rft.volume=8&rft.issue=1&rft.spage=214&rft.epage=11&rft.pages=214-11&rft.artnum=214&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-021-00998-5&rft_dat=%3Cproquest_doaj_%3E2560160373%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560160373&rft_id=info:pmid/34381057&rfr_iscdi=true |