Loading…

A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression

Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data 2021-08, Vol.8 (1), p.214-11, Article 214
Main Authors: Rohr, Michael, Beardsley, Jordan, Nakkina, Sai Preethi, Zhu, Xiang, Aljabban, Jihad, Hadley, Dexter, Altomare, Deborah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623
cites cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623
container_end_page 11
container_issue 1
container_start_page 214
container_title Scientific data
container_volume 8
creator Rohr, Michael
Beardsley, Jordan
Nakkina, Sai Preethi
Zhu, Xiang
Aljabban, Jihad
Hadley, Dexter
Altomare, Deborah
description Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types. Measurement(s) transcriptome • colorectal cancer Technology Type(s) microarray Factor Type(s) gene expression Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14589006
doi_str_mv 10.1038/s41597-021-00998-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061</doaj_id><sourcerecordid>2560160373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEaqu2L8ACRWIdGP8lzgapqihUqsSGrq2J7QRfOXGwfZHu2-PbtKXdsPJ45sw3ozlV9Z7AJwJMfk6ciL5rgJIGoO9lI95UZxQEbThv2dsX8Wl1mdIOAAjjIDo4qU4ZZ5KU-KxarurZxsmaenY6BowRDyWTsTGYMdlcjyHWOeKSdHRrdmFB7w_1GsPovFumWgcfotUZfb3YsHpM87FnxqO2xsUctVO0KZX_RfVuRJ_s5eN7Xt3ffP15_b25-_Ht9vrqrtGCQ25GTXoqBEpGLW973osOiemHjlprjBQtG_gg2GC5aUH3gnWIRMqBUNMx01J2Xt1uXBNwp9boZowHFdCph0SIk8KYnfZWGU4NUFPotOPAOwm9BpSagGwRWlJYXzbWuh9ma7Rdyjn8K-jryuJ-qSn8UZIJWY5cAB8fATH83tuU1S7sY7ljUlS0QFpgHSsquqmKDSlFOz5PIKCOlqvNclUsVw-WK1GaPrzc7bnlyeAiYJsgldIy2fhv9n-wfwG-0bkB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560160373</pqid></control><display><type>article</type><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</creator><creatorcontrib>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</creatorcontrib><description>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types. Measurement(s) transcriptome • colorectal cancer Technology Type(s) microarray Factor Type(s) gene expression Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14589006</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-021-00998-5</identifier><identifier>PMID: 34381057</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2407 ; 631/67/69 ; Adenoma ; Adenoma - genetics ; Adenoma - pathology ; Aged ; Bayesian analysis ; Cell Transformation, Neoplastic - genetics ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - pathology ; Data Descriptor ; Datasets ; DNA microarrays ; Female ; Gene expression ; Gene Expression Profiling ; Humanities and Social Sciences ; Humans ; Male ; Metadata ; Middle Aged ; multidisciplinary ; Oligonucleotide Array Sequence Analysis ; Science ; Science (multidisciplinary) ; Transcription ; Transcriptome ; Transcriptomes ; Tumors</subject><ispartof>Scientific data, 2021-08, Vol.8 (1), p.214-11, Article 214</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</citedby><cites>FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</cites><orcidid>0000-0002-2663-084X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2560160373/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2560160373?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34381057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohr, Michael</creatorcontrib><creatorcontrib>Beardsley, Jordan</creatorcontrib><creatorcontrib>Nakkina, Sai Preethi</creatorcontrib><creatorcontrib>Zhu, Xiang</creatorcontrib><creatorcontrib>Aljabban, Jihad</creatorcontrib><creatorcontrib>Hadley, Dexter</creatorcontrib><creatorcontrib>Altomare, Deborah</creatorcontrib><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types. Measurement(s) transcriptome • colorectal cancer Technology Type(s) microarray Factor Type(s) gene expression Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14589006</description><subject>631/114/2407</subject><subject>631/67/69</subject><subject>Adenoma</subject><subject>Adenoma - genetics</subject><subject>Adenoma - pathology</subject><subject>Aged</subject><subject>Bayesian analysis</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Data Descriptor</subject><subject>Datasets</subject><subject>DNA microarrays</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Metadata</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Tumors</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSMEaqu2L8ACRWIdGP8lzgapqihUqsSGrq2J7QRfOXGwfZHu2-PbtKXdsPJ45sw3ozlV9Z7AJwJMfk6ciL5rgJIGoO9lI95UZxQEbThv2dsX8Wl1mdIOAAjjIDo4qU4ZZ5KU-KxarurZxsmaenY6BowRDyWTsTGYMdlcjyHWOeKSdHRrdmFB7w_1GsPovFumWgcfotUZfb3YsHpM87FnxqO2xsUctVO0KZX_RfVuRJ_s5eN7Xt3ffP15_b25-_Ht9vrqrtGCQ25GTXoqBEpGLW973osOiemHjlprjBQtG_gg2GC5aUH3gnWIRMqBUNMx01J2Xt1uXBNwp9boZowHFdCph0SIk8KYnfZWGU4NUFPotOPAOwm9BpSagGwRWlJYXzbWuh9ma7Rdyjn8K-jryuJ-qSn8UZIJWY5cAB8fATH83tuU1S7sY7ljUlS0QFpgHSsquqmKDSlFOz5PIKCOlqvNclUsVw-WK1GaPrzc7bnlyeAiYJsgldIy2fhv9n-wfwG-0bkB</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Rohr, Michael</creator><creator>Beardsley, Jordan</creator><creator>Nakkina, Sai Preethi</creator><creator>Zhu, Xiang</creator><creator>Aljabban, Jihad</creator><creator>Hadley, Dexter</creator><creator>Altomare, Deborah</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2663-084X</orcidid></search><sort><creationdate>20210811</creationdate><title>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</title><author>Rohr, Michael ; Beardsley, Jordan ; Nakkina, Sai Preethi ; Zhu, Xiang ; Aljabban, Jihad ; Hadley, Dexter ; Altomare, Deborah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114/2407</topic><topic>631/67/69</topic><topic>Adenoma</topic><topic>Adenoma - genetics</topic><topic>Adenoma - pathology</topic><topic>Aged</topic><topic>Bayesian analysis</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Data Descriptor</topic><topic>Datasets</topic><topic>DNA microarrays</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Metadata</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohr, Michael</creatorcontrib><creatorcontrib>Beardsley, Jordan</creatorcontrib><creatorcontrib>Nakkina, Sai Preethi</creatorcontrib><creatorcontrib>Zhu, Xiang</creatorcontrib><creatorcontrib>Aljabban, Jihad</creatorcontrib><creatorcontrib>Hadley, Dexter</creatorcontrib><creatorcontrib>Altomare, Deborah</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohr, Michael</au><au>Beardsley, Jordan</au><au>Nakkina, Sai Preethi</au><au>Zhu, Xiang</au><au>Aljabban, Jihad</au><au>Hadley, Dexter</au><au>Altomare, Deborah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2021-08-11</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>214</spage><epage>11</epage><pages>214-11</pages><artnum>214</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal monitoring of molecular events underlying neoplastic progression. However, the most widely used transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance on an assortment of disparate microarray studies and hinders consensus building. To address this, we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray averaging and subsequently merged. Batch effects were then identified and removed by empirical Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling downstream differential expression as well as quantitative and functional validation through cross-platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a robust tool for investigating colorectal adenoma formation and malignant transformation at the transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other cancer types. Measurement(s) transcriptome • colorectal cancer Technology Type(s) microarray Factor Type(s) gene expression Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14589006</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34381057</pmid><doi>10.1038/s41597-021-00998-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2663-084X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2021-08, Vol.8 (1), p.214-11, Article 214
issn 2052-4463
2052-4463
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d42d02dd9b274047809c0a8c1086a061
source Open Access: PubMed Central; Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/2407
631/67/69
Adenoma
Adenoma - genetics
Adenoma - pathology
Aged
Bayesian analysis
Cell Transformation, Neoplastic - genetics
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Data Descriptor
Datasets
DNA microarrays
Female
Gene expression
Gene Expression Profiling
Humanities and Social Sciences
Humans
Male
Metadata
Middle Aged
multidisciplinary
Oligonucleotide Array Sequence Analysis
Science
Science (multidisciplinary)
Transcription
Transcriptome
Transcriptomes
Tumors
title A merged microarray meta-dataset for transcriptionally profiling colorectal neoplasm formation and progression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20merged%20microarray%20meta-dataset%20for%20transcriptionally%20profiling%20colorectal%20neoplasm%20formation%20and%20progression&rft.jtitle=Scientific%20data&rft.au=Rohr,%20Michael&rft.date=2021-08-11&rft.volume=8&rft.issue=1&rft.spage=214&rft.epage=11&rft.pages=214-11&rft.artnum=214&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-021-00998-5&rft_dat=%3Cproquest_doaj_%3E2560160373%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-fc19255a832e4694957a1d9b72eedd8563b4b53be4d60c9537aa188b12d73d623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560160373&rft_id=info:pmid/34381057&rfr_iscdi=true