Loading…
RoI-Attention Network for Small Disease Segmentation in Crop Images
We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regio...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.63725-63734 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03 |
container_end_page | 63734 |
container_issue | |
container_start_page | 63725 |
container_title | IEEE access |
container_volume | 12 |
creator | Moon, Goo-Young Kim, Jong-Ok |
description | We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions. |
doi_str_mv | 10.1109/ACCESS.2024.3393301 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507828</ieee_id><doaj_id>oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487</doaj_id><sourcerecordid>3052194782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOb-An0o-NyZ5JqmfRx1amEoWH0OWXoZnW0zkw7xv7dbh-xe7ji-73fHFwS3lMwpJdnDIs-XZTlnhMVzgAyA0ItgwmiSRcAhuTybr4OZ91syVDqsuJgE-bstokXfY9fXtgtfsf-x7is01oVlq5omfKw9Ko9hiZt2EKmjrO7C3NldWLRqg_4muDKq8Tg79Wnw-bT8yF-i1dtzkS9WkQae9RGg0NogEZAJRoQygjGexABJrKtM0TTjiRIKNaWJ5ik1KmUMRaJpyjQYAtOgGLmVVVu5c3Wr3K-0qpbHhXUbqVxf6wZlFUOFZF1RwDhGgLUxnAExnDCj41QMrPuRtXP2e4--l1u7d93wvgTCGc1ikbJBBaNKO-u9Q_N_lRJ5CF-O4ctD-PIU_uC6G101Ip45OBmYKfwB7nd-NA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052194782</pqid></control><display><type>article</type><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><source>IEEE Open Access Journals</source><creator>Moon, Goo-Young ; Kim, Jong-Ok</creator><creatorcontrib>Moon, Goo-Young ; Kim, Jong-Ok</creatorcontrib><description>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3393301</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural management ; Crop diseases ; crop images ; Crops ; disease ; Diseases ; Feature extraction ; Image enhancement ; Image segmentation ; Medical imaging ; Plant diseases ; RoI-attention ; Semantic segmentation ; small object detection ; Smart agriculture ; Transformers</subject><ispartof>IEEE access, 2024, Vol.12, p.63725-63734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</cites><orcidid>0000-0001-7022-2408 ; 0009-0008-8789-3863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507828$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Moon, Goo-Young</creatorcontrib><creatorcontrib>Kim, Jong-Ok</creatorcontrib><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</description><subject>Agricultural management</subject><subject>Crop diseases</subject><subject>crop images</subject><subject>Crops</subject><subject>disease</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Plant diseases</subject><subject>RoI-attention</subject><subject>Semantic segmentation</subject><subject>small object detection</subject><subject>Smart agriculture</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxosoOOb-An0o-NyZ5JqmfRx1amEoWH0OWXoZnW0zkw7xv7dbh-xe7ji-73fHFwS3lMwpJdnDIs-XZTlnhMVzgAyA0ItgwmiSRcAhuTybr4OZ91syVDqsuJgE-bstokXfY9fXtgtfsf-x7is01oVlq5omfKw9Ko9hiZt2EKmjrO7C3NldWLRqg_4muDKq8Tg79Wnw-bT8yF-i1dtzkS9WkQae9RGg0NogEZAJRoQygjGexABJrKtM0TTjiRIKNaWJ5ik1KmUMRaJpyjQYAtOgGLmVVVu5c3Wr3K-0qpbHhXUbqVxf6wZlFUOFZF1RwDhGgLUxnAExnDCj41QMrPuRtXP2e4--l1u7d93wvgTCGc1ikbJBBaNKO-u9Q_N_lRJ5CF-O4ctD-PIU_uC6G101Ip45OBmYKfwB7nd-NA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Moon, Goo-Young</creator><creator>Kim, Jong-Ok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7022-2408</orcidid><orcidid>https://orcid.org/0009-0008-8789-3863</orcidid></search><sort><creationdate>2024</creationdate><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><author>Moon, Goo-Young ; Kim, Jong-Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural management</topic><topic>Crop diseases</topic><topic>crop images</topic><topic>Crops</topic><topic>disease</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Plant diseases</topic><topic>RoI-attention</topic><topic>Semantic segmentation</topic><topic>small object detection</topic><topic>Smart agriculture</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Goo-Young</creatorcontrib><creatorcontrib>Kim, Jong-Ok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Goo-Young</au><au>Kim, Jong-Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RoI-Attention Network for Small Disease Segmentation in Crop Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>63725</spage><epage>63734</epage><pages>63725-63734</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3393301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7022-2408</orcidid><orcidid>https://orcid.org/0009-0008-8789-3863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.63725-63734 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487 |
source | IEEE Open Access Journals |
subjects | Agricultural management Crop diseases crop images Crops disease Diseases Feature extraction Image enhancement Image segmentation Medical imaging Plant diseases RoI-attention Semantic segmentation small object detection Smart agriculture Transformers |
title | RoI-Attention Network for Small Disease Segmentation in Crop Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RoI-Attention%20Network%20for%20Small%20Disease%20Segmentation%20in%20Crop%20Images&rft.jtitle=IEEE%20access&rft.au=Moon,%20Goo-Young&rft.date=2024&rft.volume=12&rft.spage=63725&rft.epage=63734&rft.pages=63725-63734&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3393301&rft_dat=%3Cproquest_doaj_%3E3052194782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052194782&rft_id=info:pmid/&rft_ieee_id=10507828&rfr_iscdi=true |