Loading…

RoI-Attention Network for Small Disease Segmentation in Crop Images

We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.63725-63734
Main Authors: Moon, Goo-Young, Kim, Jong-Ok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03
container_end_page 63734
container_issue
container_start_page 63725
container_title IEEE access
container_volume 12
creator Moon, Goo-Young
Kim, Jong-Ok
description We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.
doi_str_mv 10.1109/ACCESS.2024.3393301
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507828</ieee_id><doaj_id>oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487</doaj_id><sourcerecordid>3052194782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxosoOOb-An0o-NyZ5JqmfRx1amEoWH0OWXoZnW0zkw7xv7dbh-xe7ji-73fHFwS3lMwpJdnDIs-XZTlnhMVzgAyA0ItgwmiSRcAhuTybr4OZ91syVDqsuJgE-bstokXfY9fXtgtfsf-x7is01oVlq5omfKw9Ko9hiZt2EKmjrO7C3NldWLRqg_4muDKq8Tg79Wnw-bT8yF-i1dtzkS9WkQae9RGg0NogEZAJRoQygjGexABJrKtM0TTjiRIKNaWJ5ik1KmUMRaJpyjQYAtOgGLmVVVu5c3Wr3K-0qpbHhXUbqVxf6wZlFUOFZF1RwDhGgLUxnAExnDCj41QMrPuRtXP2e4--l1u7d93wvgTCGc1ikbJBBaNKO-u9Q_N_lRJ5CF-O4ctD-PIU_uC6G101Ip45OBmYKfwB7nd-NA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052194782</pqid></control><display><type>article</type><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><source>IEEE Open Access Journals</source><creator>Moon, Goo-Young ; Kim, Jong-Ok</creator><creatorcontrib>Moon, Goo-Young ; Kim, Jong-Ok</creatorcontrib><description>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3393301</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agricultural management ; Crop diseases ; crop images ; Crops ; disease ; Diseases ; Feature extraction ; Image enhancement ; Image segmentation ; Medical imaging ; Plant diseases ; RoI-attention ; Semantic segmentation ; small object detection ; Smart agriculture ; Transformers</subject><ispartof>IEEE access, 2024, Vol.12, p.63725-63734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</cites><orcidid>0000-0001-7022-2408 ; 0009-0008-8789-3863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507828$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Moon, Goo-Young</creatorcontrib><creatorcontrib>Kim, Jong-Ok</creatorcontrib><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</description><subject>Agricultural management</subject><subject>Crop diseases</subject><subject>crop images</subject><subject>Crops</subject><subject>disease</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Plant diseases</subject><subject>RoI-attention</subject><subject>Semantic segmentation</subject><subject>small object detection</subject><subject>Smart agriculture</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNFLwzAQxosoOOb-An0o-NyZ5JqmfRx1amEoWH0OWXoZnW0zkw7xv7dbh-xe7ji-73fHFwS3lMwpJdnDIs-XZTlnhMVzgAyA0ItgwmiSRcAhuTybr4OZ91syVDqsuJgE-bstokXfY9fXtgtfsf-x7is01oVlq5omfKw9Ko9hiZt2EKmjrO7C3NldWLRqg_4muDKq8Tg79Wnw-bT8yF-i1dtzkS9WkQae9RGg0NogEZAJRoQygjGexABJrKtM0TTjiRIKNaWJ5ik1KmUMRaJpyjQYAtOgGLmVVVu5c3Wr3K-0qpbHhXUbqVxf6wZlFUOFZF1RwDhGgLUxnAExnDCj41QMrPuRtXP2e4--l1u7d93wvgTCGc1ikbJBBaNKO-u9Q_N_lRJ5CF-O4ctD-PIU_uC6G101Ip45OBmYKfwB7nd-NA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Moon, Goo-Young</creator><creator>Kim, Jong-Ok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7022-2408</orcidid><orcidid>https://orcid.org/0009-0008-8789-3863</orcidid></search><sort><creationdate>2024</creationdate><title>RoI-Attention Network for Small Disease Segmentation in Crop Images</title><author>Moon, Goo-Young ; Kim, Jong-Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural management</topic><topic>Crop diseases</topic><topic>crop images</topic><topic>Crops</topic><topic>disease</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Plant diseases</topic><topic>RoI-attention</topic><topic>Semantic segmentation</topic><topic>small object detection</topic><topic>Smart agriculture</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, Goo-Young</creatorcontrib><creatorcontrib>Kim, Jong-Ok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, Goo-Young</au><au>Kim, Jong-Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RoI-Attention Network for Small Disease Segmentation in Crop Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>63725</spage><epage>63734</epage><pages>63725-63734</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We aim to contribute to deep learning based smart agriculture through semantic segmentation on crop images from real field environment. The key objective is the precise detection of diseases to facilitate the automation of agricultural management. The most significant issue is that the disease regions, serving as Regions of Interest (RoI), are small, making accurate prediction challenging. To address this issue, we propose a new framework of RoI-Attention Network (RA-Net) which additionally utilizes an RoI-attentive image that includes only regions predicted as disease and their surroundings from the input image. Using the RoI-attentive image, RA-Net enhances the representation power for disease regions by guiding the network to re-focus on RoI-associated context based on the initial prediction from the input. Using the proposed RoI-Attention stage, the coarse predictions of disease regions in crop images can be enhanced by incorporating additional sequential RoI-Attention and fusion stages. We have experimentally demonstrated the effectiveness of the proposed RA-Net in predicting small disease regions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3393301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7022-2408</orcidid><orcidid>https://orcid.org/0009-0008-8789-3863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.63725-63734
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d43de0bd13e44e33bff5230f502fc487
source IEEE Open Access Journals
subjects Agricultural management
Crop diseases
crop images
Crops
disease
Diseases
Feature extraction
Image enhancement
Image segmentation
Medical imaging
Plant diseases
RoI-attention
Semantic segmentation
small object detection
Smart agriculture
Transformers
title RoI-Attention Network for Small Disease Segmentation in Crop Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RoI-Attention%20Network%20for%20Small%20Disease%20Segmentation%20in%20Crop%20Images&rft.jtitle=IEEE%20access&rft.au=Moon,%20Goo-Young&rft.date=2024&rft.volume=12&rft.spage=63725&rft.epage=63734&rft.pages=63725-63734&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3393301&rft_dat=%3Cproquest_doaj_%3E3052194782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-3e7ccfe07397207af7225643364cd9a18956a7aec116c581fa822e76c182c3f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052194782&rft_id=info:pmid/&rft_ieee_id=10507828&rfr_iscdi=true