Loading…

Research on marine flexible biological target detection based on improved YOLOv8 algorithm

To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biologica...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science 2024-08, Vol.10, p.e2271, Article e2271
Main Authors: Tian, Yu, Liu, Yanwen, Lin, Baohang, Li, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783
container_end_page
container_issue
container_start_page e2271
container_title PeerJ. Computer science
container_volume 10
creator Tian, Yu
Liu, Yanwen
Lin, Baohang
Li, Peng
description To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.
doi_str_mv 10.7717/peerj-cs.2271
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813704368</galeid><doaj_id>oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac</doaj_id><sourcerecordid>A813704368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaY6_F0Et78FaybMk6lRD6sbAQSNtDexEjaeTV4rW2kndJ_33lbBqyUM1Bw-iZlxnxFsVrShZCUPFhhxg3lUmLuhb0WXFeM8GrVsr6-ZP8rLhMaUMIoS3NR74szphktOEdPy9-3WJCiGZdhrHcQvQjlm7AO68HLLUPQ-i9gaGcIPY4lRYnNJPPrIaEdm7y210Mh5z_vFndHLoShj5EP623r4oXDoaElw_3RfHj86fv11-r1c2X5fXVqjKs5bTSriWOW21bW0toJQVmkEtCmq6TDihaRq3TtBYWgGvOqTO2w9aAcMyKjl0Uy6OuDbBRu-jzGn9UAK_uCyH2CuLkzYDKNo0jCKxrJTRa1hKlsVZI3WimOzBZ6-NRa7fXW7QGxynCcCJ6-jL6terDQVHaUMkpyQrvHhRi-L3HNKmtTwaHAUYM-6QYJZ3grWDz4G-PaA95Nj-6kCXNjKurjjJBGsZnavEfKofFrTdhROdz_aTh_UlDZia8m3rYp6SW325P2erImhhSiugeV6VEzRZT9xZTJqnZYpl_8_R_Hul_hmJ_AeiEzg4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108765738</pqid></control><display><type>article</type><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</creator><creatorcontrib>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</creatorcontrib><description>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.2271</identifier><identifier>PMID: 39314686</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Algorithms ; Algorithms and Analysis of Algorithms ; Artificial Intelligence ; CLAHE ; Computer Vision ; Data Mining and Machine Learning ; Improved YOLOv8 ; Marine flexible biological targets ; Neural Networks ; Target detection</subject><ispartof>PeerJ. Computer science, 2024-08, Vol.10, p.e2271, Article e2271</ispartof><rights>2024 Tian et al.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Tian et al. 2024 Tian et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</cites><orcidid>0000-0002-8424-1367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39314686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Liu, Yanwen</creatorcontrib><creatorcontrib>Lin, Baohang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</description><subject>Algorithms</subject><subject>Algorithms and Analysis of Algorithms</subject><subject>Artificial Intelligence</subject><subject>CLAHE</subject><subject>Computer Vision</subject><subject>Data Mining and Machine Learning</subject><subject>Improved YOLOv8</subject><subject>Marine flexible biological targets</subject><subject>Neural Networks</subject><subject>Target detection</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaY6_F0Et78FaybMk6lRD6sbAQSNtDexEjaeTV4rW2kndJ_33lbBqyUM1Bw-iZlxnxFsVrShZCUPFhhxg3lUmLuhb0WXFeM8GrVsr6-ZP8rLhMaUMIoS3NR74szphktOEdPy9-3WJCiGZdhrHcQvQjlm7AO68HLLUPQ-i9gaGcIPY4lRYnNJPPrIaEdm7y210Mh5z_vFndHLoShj5EP623r4oXDoaElw_3RfHj86fv11-r1c2X5fXVqjKs5bTSriWOW21bW0toJQVmkEtCmq6TDihaRq3TtBYWgGvOqTO2w9aAcMyKjl0Uy6OuDbBRu-jzGn9UAK_uCyH2CuLkzYDKNo0jCKxrJTRa1hKlsVZI3WimOzBZ6-NRa7fXW7QGxynCcCJ6-jL6terDQVHaUMkpyQrvHhRi-L3HNKmtTwaHAUYM-6QYJZ3grWDz4G-PaA95Nj-6kCXNjKurjjJBGsZnavEfKofFrTdhROdz_aTh_UlDZia8m3rYp6SW325P2erImhhSiugeV6VEzRZT9xZTJqnZYpl_8_R_Hul_hmJ_AeiEzg4</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Tian, Yu</creator><creator>Liu, Yanwen</creator><creator>Lin, Baohang</creator><creator>Li, Peng</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8424-1367</orcidid></search><sort><creationdate>20240822</creationdate><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><author>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Algorithms and Analysis of Algorithms</topic><topic>Artificial Intelligence</topic><topic>CLAHE</topic><topic>Computer Vision</topic><topic>Data Mining and Machine Learning</topic><topic>Improved YOLOv8</topic><topic>Marine flexible biological targets</topic><topic>Neural Networks</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Liu, Yanwen</creatorcontrib><creatorcontrib>Lin, Baohang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yu</au><au>Liu, Yanwen</au><au>Lin, Baohang</au><au>Li, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>10</volume><spage>e2271</spage><pages>e2271-</pages><artnum>e2271</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>39314686</pmid><doi>10.7717/peerj-cs.2271</doi><tpages>e2271</tpages><orcidid>https://orcid.org/0000-0002-8424-1367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2024-08, Vol.10, p.e2271, Article e2271
issn 2376-5992
2376-5992
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Algorithms and Analysis of Algorithms
Artificial Intelligence
CLAHE
Computer Vision
Data Mining and Machine Learning
Improved YOLOv8
Marine flexible biological targets
Neural Networks
Target detection
title Research on marine flexible biological target detection based on improved YOLOv8 algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20marine%20flexible%20biological%20target%20detection%20based%20on%20improved%20YOLOv8%20algorithm&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Tian,%20Yu&rft.date=2024-08-22&rft.volume=10&rft.spage=e2271&rft.pages=e2271-&rft.artnum=e2271&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.2271&rft_dat=%3Cgale_doaj_%3EA813704368%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108765738&rft_id=info:pmid/39314686&rft_galeid=A813704368&rfr_iscdi=true