Loading…
Research on marine flexible biological target detection based on improved YOLOv8 algorithm
To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biologica...
Saved in:
Published in: | PeerJ. Computer science 2024-08, Vol.10, p.e2271, Article e2271 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783 |
container_end_page | |
container_issue | |
container_start_page | e2271 |
container_title | PeerJ. Computer science |
container_volume | 10 |
creator | Tian, Yu Liu, Yanwen Lin, Baohang Li, Peng |
description | To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection. |
doi_str_mv | 10.7717/peerj-cs.2271 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813704368</galeid><doaj_id>oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac</doaj_id><sourcerecordid>A813704368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaY6_F0Et78FaybMk6lRD6sbAQSNtDexEjaeTV4rW2kndJ_33lbBqyUM1Bw-iZlxnxFsVrShZCUPFhhxg3lUmLuhb0WXFeM8GrVsr6-ZP8rLhMaUMIoS3NR74szphktOEdPy9-3WJCiGZdhrHcQvQjlm7AO68HLLUPQ-i9gaGcIPY4lRYnNJPPrIaEdm7y210Mh5z_vFndHLoShj5EP623r4oXDoaElw_3RfHj86fv11-r1c2X5fXVqjKs5bTSriWOW21bW0toJQVmkEtCmq6TDihaRq3TtBYWgGvOqTO2w9aAcMyKjl0Uy6OuDbBRu-jzGn9UAK_uCyH2CuLkzYDKNo0jCKxrJTRa1hKlsVZI3WimOzBZ6-NRa7fXW7QGxynCcCJ6-jL6terDQVHaUMkpyQrvHhRi-L3HNKmtTwaHAUYM-6QYJZ3grWDz4G-PaA95Nj-6kCXNjKurjjJBGsZnavEfKofFrTdhROdz_aTh_UlDZia8m3rYp6SW325P2erImhhSiugeV6VEzRZT9xZTJqnZYpl_8_R_Hul_hmJ_AeiEzg4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108765738</pqid></control><display><type>article</type><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</creator><creatorcontrib>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</creatorcontrib><description>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.2271</identifier><identifier>PMID: 39314686</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Algorithms ; Algorithms and Analysis of Algorithms ; Artificial Intelligence ; CLAHE ; Computer Vision ; Data Mining and Machine Learning ; Improved YOLOv8 ; Marine flexible biological targets ; Neural Networks ; Target detection</subject><ispartof>PeerJ. Computer science, 2024-08, Vol.10, p.e2271, Article e2271</ispartof><rights>2024 Tian et al.</rights><rights>COPYRIGHT 2024 PeerJ. Ltd.</rights><rights>2024 Tian et al. 2024 Tian et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</cites><orcidid>0000-0002-8424-1367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419610/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419610/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39314686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Liu, Yanwen</creatorcontrib><creatorcontrib>Lin, Baohang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</description><subject>Algorithms</subject><subject>Algorithms and Analysis of Algorithms</subject><subject>Artificial Intelligence</subject><subject>CLAHE</subject><subject>Computer Vision</subject><subject>Data Mining and Machine Learning</subject><subject>Improved YOLOv8</subject><subject>Marine flexible biological targets</subject><subject>Neural Networks</subject><subject>Target detection</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaY6_F0Et78FaybMk6lRD6sbAQSNtDexEjaeTV4rW2kndJ_33lbBqyUM1Bw-iZlxnxFsVrShZCUPFhhxg3lUmLuhb0WXFeM8GrVsr6-ZP8rLhMaUMIoS3NR74szphktOEdPy9-3WJCiGZdhrHcQvQjlm7AO68HLLUPQ-i9gaGcIPY4lRYnNJPPrIaEdm7y210Mh5z_vFndHLoShj5EP623r4oXDoaElw_3RfHj86fv11-r1c2X5fXVqjKs5bTSriWOW21bW0toJQVmkEtCmq6TDihaRq3TtBYWgGvOqTO2w9aAcMyKjl0Uy6OuDbBRu-jzGn9UAK_uCyH2CuLkzYDKNo0jCKxrJTRa1hKlsVZI3WimOzBZ6-NRa7fXW7QGxynCcCJ6-jL6terDQVHaUMkpyQrvHhRi-L3HNKmtTwaHAUYM-6QYJZ3grWDz4G-PaA95Nj-6kCXNjKurjjJBGsZnavEfKofFrTdhROdz_aTh_UlDZia8m3rYp6SW325P2erImhhSiugeV6VEzRZT9xZTJqnZYpl_8_R_Hul_hmJ_AeiEzg4</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Tian, Yu</creator><creator>Liu, Yanwen</creator><creator>Lin, Baohang</creator><creator>Li, Peng</creator><general>PeerJ. Ltd</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8424-1367</orcidid></search><sort><creationdate>20240822</creationdate><title>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</title><author>Tian, Yu ; Liu, Yanwen ; Lin, Baohang ; Li, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Algorithms and Analysis of Algorithms</topic><topic>Artificial Intelligence</topic><topic>CLAHE</topic><topic>Computer Vision</topic><topic>Data Mining and Machine Learning</topic><topic>Improved YOLOv8</topic><topic>Marine flexible biological targets</topic><topic>Neural Networks</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Liu, Yanwen</creatorcontrib><creatorcontrib>Lin, Baohang</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yu</au><au>Liu, Yanwen</au><au>Lin, Baohang</au><au>Li, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on marine flexible biological target detection based on improved YOLOv8 algorithm</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>10</volume><spage>e2271</spage><pages>e2271-</pages><artnum>e2271</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>39314686</pmid><doi>10.7717/peerj-cs.2271</doi><tpages>e2271</tpages><orcidid>https://orcid.org/0000-0002-8424-1367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-5992 |
ispartof | PeerJ. Computer science, 2024-08, Vol.10, p.e2271, Article e2271 |
issn | 2376-5992 2376-5992 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Algorithms and Analysis of Algorithms Artificial Intelligence CLAHE Computer Vision Data Mining and Machine Learning Improved YOLOv8 Marine flexible biological targets Neural Networks Target detection |
title | Research on marine flexible biological target detection based on improved YOLOv8 algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20marine%20flexible%20biological%20target%20detection%20based%20on%20improved%20YOLOv8%20algorithm&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Tian,%20Yu&rft.date=2024-08-22&rft.volume=10&rft.spage=e2271&rft.pages=e2271-&rft.artnum=e2271&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.2271&rft_dat=%3Cgale_doaj_%3EA813704368%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3561-bf50f6dbd5d29a591a3ce69004889fa1ed31dfb127daa6b661fcd8e5ca7f3d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108765738&rft_id=info:pmid/39314686&rft_galeid=A813704368&rfr_iscdi=true |