Loading…
Tsunami arrival time detection system applicable to discontinuous time series data with outliers
Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after t...
Saved in:
Published in: | Natural hazards and earth system sciences 2016-12, Vol.16 (12), p.2603-2622 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53 |
---|---|
cites | cdi_FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53 |
container_end_page | 2622 |
container_issue | 12 |
container_start_page | 2603 |
container_title | Natural hazards and earth system sciences |
container_volume | 16 |
creator | Lee, Jun-Whan Park, Sun-Cheon Lee, Duk Kee Lee, Jong Ho |
description | Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outliers. TADS consists of three algorithms, outlier removal, gap filling, and tsunami detection, which are designed to update whenever new data are acquired. After calibrating the thresholds and parameters for the Ulleung-do surge gauge located in the East Sea (Sea of Japan), Korea, the performance of TADS was discussed based on a 1-year dataset with historical tsunamis and synthetic tsunamis. The results show that the overall performance of TADS is effective in detecting a tsunami signal superimposed on both outliers and gaps. |
doi_str_mv | 10.5194/nhess-16-2603-2016 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d450a53ea1024c92a92d3fda036a2a52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482200233</galeid><doaj_id>oai_doaj_org_article_d450a53ea1024c92a92d3fda036a2a52</doaj_id><sourcerecordid>A482200233</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRBIlMIf4GSJE4cUfyc-VhUfK1VCgnI2E3uy9SqJF9uh9N_j7SJgJYR98Gj05o3nzWual4xeKGbkm-UWc26ZbrmmouWU6UfNGdO9bI3p2eO_4qfNs5x3lHKjJD1rvt7kdYE5EEgpfIeJlDAj8VjQlRAXku9zwZnAfj8FB8OEpETiQ3ZxKWFZ45qPFRlTwEw8FCB3odySuJYpYMrPmycjTBlf_HrPmy_v3t5cfWivP77fXF1et6BEV1qm1DByyTXrHB_rEcOAPYNOcSeYMFRhr4dBD877cRgkN70e6-RCqDqsU-K82Rx5fYSd3acwQ7q3EYJ9SMS0tZBKcBNaLxWtXREY5dIZDoZ7MXqgQgMHxSvXqyPXPsVvK-Zid3FNS_2-5ZJJzngn5f9QrJcdNZop9ge1hdo6LGMsCdxcFbSXsue8bkKIirr4B6pej3OoWuMYav6k4PVJwWEf-KNsYc3Zbj5_OsXyI9almHPC8bc8jNqDfeyDfSzT9mAfe7CP-AkG2bcE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847096151</pqid></control><display><type>article</type><title>Tsunami arrival time detection system applicable to discontinuous time series data with outliers</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Lee, Jun-Whan ; Park, Sun-Cheon ; Lee, Duk Kee ; Lee, Jong Ho</creator><creatorcontrib>Lee, Jun-Whan ; Park, Sun-Cheon ; Lee, Duk Kee ; Lee, Jong Ho</creatorcontrib><description>Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outliers. TADS consists of three algorithms, outlier removal, gap filling, and tsunami detection, which are designed to update whenever new data are acquired. After calibrating the thresholds and parameters for the Ulleung-do surge gauge located in the East Sea (Sea of Japan), Korea, the performance of TADS was discussed based on a 1-year dataset with historical tsunamis and synthetic tsunamis. The results show that the overall performance of TADS is effective in detecting a tsunami signal superimposed on both outliers and gaps.</description><identifier>ISSN: 1684-9981</identifier><identifier>ISSN: 1561-8633</identifier><identifier>EISSN: 1684-9981</identifier><identifier>DOI: 10.5194/nhess-16-2603-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Alarms ; Algorithms ; Data ; Data acquisition ; Data analysis ; Detection ; Detection equipment ; Earthquakes ; False alarms ; Methods ; Neural networks ; Outliers (statistics) ; Real time ; Time series ; Timing ; Tsunamis ; Water levels ; Wavelet transforms</subject><ispartof>Natural hazards and earth system sciences, 2016-12, Vol.16 (12), p.2603-2622</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53</citedby><cites>FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414212744/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414212744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Lee, Jun-Whan</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Lee, Duk Kee</creatorcontrib><creatorcontrib>Lee, Jong Ho</creatorcontrib><title>Tsunami arrival time detection system applicable to discontinuous time series data with outliers</title><title>Natural hazards and earth system sciences</title><description>Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outliers. TADS consists of three algorithms, outlier removal, gap filling, and tsunami detection, which are designed to update whenever new data are acquired. After calibrating the thresholds and parameters for the Ulleung-do surge gauge located in the East Sea (Sea of Japan), Korea, the performance of TADS was discussed based on a 1-year dataset with historical tsunamis and synthetic tsunamis. The results show that the overall performance of TADS is effective in detecting a tsunami signal superimposed on both outliers and gaps.</description><subject>Alarms</subject><subject>Algorithms</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Detection</subject><subject>Detection equipment</subject><subject>Earthquakes</subject><subject>False alarms</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Outliers (statistics)</subject><subject>Real time</subject><subject>Time series</subject><subject>Timing</subject><subject>Tsunamis</subject><subject>Water levels</subject><subject>Wavelet transforms</subject><issn>1684-9981</issn><issn>1561-8633</issn><issn>1684-9981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1v1DAQjRBIlMIf4GSJE4cUfyc-VhUfK1VCgnI2E3uy9SqJF9uh9N_j7SJgJYR98Gj05o3nzWual4xeKGbkm-UWc26ZbrmmouWU6UfNGdO9bI3p2eO_4qfNs5x3lHKjJD1rvt7kdYE5EEgpfIeJlDAj8VjQlRAXku9zwZnAfj8FB8OEpETiQ3ZxKWFZ45qPFRlTwEw8FCB3odySuJYpYMrPmycjTBlf_HrPmy_v3t5cfWivP77fXF1et6BEV1qm1DByyTXrHB_rEcOAPYNOcSeYMFRhr4dBD877cRgkN70e6-RCqDqsU-K82Rx5fYSd3acwQ7q3EYJ9SMS0tZBKcBNaLxWtXREY5dIZDoZ7MXqgQgMHxSvXqyPXPsVvK-Zid3FNS_2-5ZJJzngn5f9QrJcdNZop9ge1hdo6LGMsCdxcFbSXsue8bkKIirr4B6pej3OoWuMYav6k4PVJwWEf-KNsYc3Zbj5_OsXyI9almHPC8bc8jNqDfeyDfSzT9mAfe7CP-AkG2bcE</recordid><startdate>20161209</startdate><enddate>20161209</enddate><creator>Lee, Jun-Whan</creator><creator>Park, Sun-Cheon</creator><creator>Lee, Duk Kee</creator><creator>Lee, Jong Ho</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20161209</creationdate><title>Tsunami arrival time detection system applicable to discontinuous time series data with outliers</title><author>Lee, Jun-Whan ; Park, Sun-Cheon ; Lee, Duk Kee ; Lee, Jong Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alarms</topic><topic>Algorithms</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Detection</topic><topic>Detection equipment</topic><topic>Earthquakes</topic><topic>False alarms</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Outliers (statistics)</topic><topic>Real time</topic><topic>Time series</topic><topic>Timing</topic><topic>Tsunamis</topic><topic>Water levels</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun-Whan</creatorcontrib><creatorcontrib>Park, Sun-Cheon</creatorcontrib><creatorcontrib>Lee, Duk Kee</creatorcontrib><creatorcontrib>Lee, Jong Ho</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Natural hazards and earth system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun-Whan</au><au>Park, Sun-Cheon</au><au>Lee, Duk Kee</au><au>Lee, Jong Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tsunami arrival time detection system applicable to discontinuous time series data with outliers</atitle><jtitle>Natural hazards and earth system sciences</jtitle><date>2016-12-09</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>2603</spage><epage>2622</epage><pages>2603-2622</pages><issn>1684-9981</issn><issn>1561-8633</issn><eissn>1684-9981</eissn><abstract>Timely detection of tsunamis with water level records is a critical but logistically challenging task because of outliers and gaps. Since tsunami detection algorithms require several hours of past data, outliers could cause false alarms, and gaps can stop the tsunami detection algorithm even after the recording is restarted. In order to avoid such false alarms and time delays, we propose the Tsunami Arrival time Detection System (TADS), which can be applied to discontinuous time series data with outliers. TADS consists of three algorithms, outlier removal, gap filling, and tsunami detection, which are designed to update whenever new data are acquired. After calibrating the thresholds and parameters for the Ulleung-do surge gauge located in the East Sea (Sea of Japan), Korea, the performance of TADS was discussed based on a 1-year dataset with historical tsunamis and synthetic tsunamis. The results show that the overall performance of TADS is effective in detecting a tsunami signal superimposed on both outliers and gaps.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/nhess-16-2603-2016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1684-9981 |
ispartof | Natural hazards and earth system sciences, 2016-12, Vol.16 (12), p.2603-2622 |
issn | 1684-9981 1561-8633 1684-9981 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d450a53ea1024c92a92d3fda036a2a52 |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Alarms Algorithms Data Data acquisition Data analysis Detection Detection equipment Earthquakes False alarms Methods Neural networks Outliers (statistics) Real time Time series Timing Tsunamis Water levels Wavelet transforms |
title | Tsunami arrival time detection system applicable to discontinuous time series data with outliers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tsunami%20arrival%20time%20detection%20system%20applicable%20to%20discontinuous%20time%20series%20data%20with%20outliers&rft.jtitle=Natural%20hazards%20and%20earth%20system%20sciences&rft.au=Lee,%20Jun-Whan&rft.date=2016-12-09&rft.volume=16&rft.issue=12&rft.spage=2603&rft.epage=2622&rft.pages=2603-2622&rft.issn=1684-9981&rft.eissn=1684-9981&rft_id=info:doi/10.5194/nhess-16-2603-2016&rft_dat=%3Cgale_doaj_%3EA482200233%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a537t-155bf242617c2ffff3bbe81a752c313905e86bb6bcddfbb42986f194335016c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1847096151&rft_id=info:pmid/&rft_galeid=A482200233&rfr_iscdi=true |