Loading…

Study on extraction and separation of Ni and Zn using [bmim][PF6] IL as selective extractant from nitric acid solution obtained from zinc plant residue leaching

For the ever-growing demand of nickel (Ni) resources in industry, the Ni recovery from the mining residues or waste has received considerable interest. Zinc plant residue contains valuable metals it may be recovered using conventional pyrometallurgical or hydrometallurgical processes. The present co...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2020-06, Vol.13 (6), p.5821-5831
Main Authors: Mohammadzadeh, Masumeh, Bagheri, Hamidreza, Ghader, Sattar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the ever-growing demand of nickel (Ni) resources in industry, the Ni recovery from the mining residues or waste has received considerable interest. Zinc plant residue contains valuable metals it may be recovered using conventional pyrometallurgical or hydrometallurgical processes. The present communication is focused on the selective recovery of Ni from the real nitric acid leach solution of zinc plant residue by solvent extraction (i.e. 1-Butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) as ionic liquid, Di-(2-ethylhexyl) phosphoric acid (D2EHPA) and diphenylthiocarbazone (dithizone)). At first step, leaching of filter cake with the nitric acid solution was examined experimentally and it was observed that nitric acid as a relatively strong oxidant, can adequately dissolve Ni and Zn. After that, Ni and Zn extraction behavior in the leach solution was studied and the influence of pH and extractant concentration were investigated on the extraction of the metals. The results indicated Ni can be effectively separated by controlling the pH values. Moreover, Ni can be selectively separated using dithizone combined with [bmim][PF6] at pH = 5.5 and the separation factor βNi/Zn can reach 2.27 × 105 in one extraction stage. The extraction mechanism of Ni was investigated using slope analysis and stripping efficiencies 100% have been achieved for Zn and Ni with 2.0 M HNO3. Thus, it can be concluded that the use of [bmim][PF6] as alternatives solvents which have a less significant environmental impact than the usual solvents in terms of emission of vapors is one of the promising approaches for nickel ion extraction from the real leaching solution of zinc plant residue.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2020.04.019