Loading…
Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems
Serpentinizing hydrothermal systems result from water circulating into the subsurface and interacting with mantle-derived rocks notably near mid-ocean ridges or continental ophiolites. Serpentinization and associated reactions produce alkaline fluids enriched in molecular hydrogen, methane, and smal...
Saved in:
Published in: | mSystems 2022-08, Vol.7 (4), p.e0032822-e0032822 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Serpentinizing hydrothermal systems result from water circulating into the subsurface and interacting with mantle-derived rocks notably near mid-ocean ridges or continental ophiolites. Serpentinization and associated reactions produce alkaline fluids enriched in molecular hydrogen, methane, and small organic molecules that are assumed to feed microbial inhabitants. In this study, we explored the relationships linking serpentinization to associated microbial communities by comparative metagenomics of serpentinite-hosted systems, basalt-hosted vents, and hot springs. The shallow Prony bay hydrothermal field (PBHF) microbiome appeared to be more related to those of ophiolitic sites than to the Lost City hydrothermal field (LCHF) microbiome, probably because of the meteoric origin of its fluid, like terrestrial alkaline springs. This study emphasized the ubiquitous importance of a set of genes involved in the catabolism of phosphonates and highly enriched in all serpentinizing sites compared to other ecosystems. Because most of the serpentinizing systems are depleted in inorganic phosphate, the abundance of genes involved in the carbon-phosphorus lyase pathway suggests that the phosphonates constitute a source of phosphorus in these ecosystems. Additionally, hydrocarbons such as methane, released upon phosphonate catabolism, may contribute to the overall budget of organic molecules in serpentinizing systems.
This first comparative metagenomic study of serpentinite-hosted environments provides an objective framework to understand the functioning of these peculiar ecosystems. We showed a taxonomic similarity between the PBHF and other terrestrial serpentinite-hosted ecosystems. At the same time, the LCHF microbial community was closer to deep basalt-hosted hydrothermal fields than continental ophiolites, despite the influence of serpentinization. This study revealed shared functional capabilities among serpentinite-hosted ecosystems in response to environmental stress, the metabolism of abundant dihydrogen, and the metabolism of phosphorus. Our results are consistent with the generalized view of serpentinite environments but provide deeper insight into the array of factors that may control microbial activities in these ecosystems. Moreover, we show that metabolism of phosphonate is widespread among alkaline serpentinizing systems and could play a crucial role in phosphorus and methane biogeochemical cycles. This study opens a new line of investigation of the met |
---|---|
ISSN: | 2379-5077 2379-5077 |
DOI: | 10.1128/msystems.00328-22 |