Loading…
Lack of Functional P110δ Affects Expression of Activation Marker CD80 but Does Not Influence Functions of Neutrophils
Neutrophils are specialized immune cells that are essential constituents of the innate immune response. They defend the organism against pathogens through various mechanisms. It was reported that phosphatidylinositols are key players in neutrophil functions, especially in the activity of class-I pho...
Saved in:
Published in: | International journal of molecular sciences 2022-06, Vol.23 (12), p.6361 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neutrophils are specialized immune cells that are essential constituents of the innate immune response. They defend the organism against pathogens through various mechanisms. It was reported that phosphatidylinositols are key players in neutrophil functions, especially in the activity of class-I phosphoinositide 3-kinases (PI3Ks). P110δ, one of the PI3K subunits, is mostly expressed in immune cells, and its activity plays an important role in inflammatory responses. The aim of this study was to investigate the role of p110δ in neutrophil antimicrobial functions, activation status and cytokine production. To this end, we used bone marrow and splenic neutrophils isolated from a murine model expressing catalytically inactive p110δD910A/D910A. The level of phagocytosis and degranulation, the expressions of activation markers and cytokine production were determined by flow cytometry. ROS generation and NET release were assessed by fluorometry and fluorescent microscopy. We observed a significantly higher percentage of CD80-positive cells among the splenic granulocytes and found granulocytes subpopulations of differing phenotypes between WT and p110δD910A/D910A mice by multiparametric tSNE analysis. Moreover, we detected some differences in the expressions of activation markers, intracellular production of cytokines and bacterial killing. However, we did not observe any alterations in the selected neutrophil functions in p110δ mutant mice. Altogether, our data suggest that the catalytic p110 subunit(s), other than p110δ, is a key player in most neutrophil functions in mice. A follow-up study to correlate these in vitro results with in vivo observations is highly recommended. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23126361 |