Loading…

Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis

Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplex...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-07, Vol.14 (1), p.4327-13, Article 4327
Main Authors: Zhang, Ting, Zeng, Qingdong, Ji, Fan, Wu, Honghong, Ledesma-Amaro, Rodrigo, Wei, Qingshan, Yang, Hao, Xia, Xuhan, Ren, Yao, Mu, Keqing, He, Qiang, Kang, Zhensheng, Deng, Ruijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management. On-site crop disease diagnostics is critical for precise application of pesticides. Here, the authors report an in-field molecular diagnostic tool for wheat pathogens using a nucleic acid amplification-free, gene mutation-resolved and smartphone-integrated genetic assay.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-39952-x