Loading…

Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells

has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-res...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2024-01, Vol.13 (3), p.405
Main Authors: Zhang, Zhenyu, Zhang, Yan, Hua, Yanying, Chen, Guancheng, Fu, Pengcheng, Liu, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03
cites cdi_FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03
container_end_page
container_issue 3
container_start_page 405
container_title Foods
container_volume 13
creator Zhang, Zhenyu
Zhang, Yan
Hua, Yanying
Chen, Guancheng
Fu, Pengcheng
Liu, Jing
description has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in K-01.
doi_str_mv 10.3390/foods13030405
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d4cabef048fc4cbdb9b7c9a38ee78fdd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4cabef048fc4cbdb9b7c9a38ee78fdd</doaj_id><sourcerecordid>2925035920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03</originalsourceid><addsrcrecordid>eNpdkUtv1DAQgC0EolXpkSuyxIVDA34kuw63agV0RRESlHM0sce7XjmZxU4q8RP413i7pTx8mZH1zTf2DGPPpXitdSveeCKXpRZa1KJ5xE5VSSojG_P4r_yEnee8E-W0UhutnrKTErRpdHvKfl7hhImmRPttsPwrRhzDPPD1aCntKcEUaORhnIivtpESxgj8do4bSCHzj5WQb_8U3VDEBKPFC36ZcxhCvCu_4DA6_gUHuoXIp22iebPln4JNBEUU-apY8zP2xEPMeH4fz9i39-9uVlfV9ecP69XldWVrtZgqqV3T926x8Mp6B8JYgyBqIx2AWErdOIUtevAgvXFKguwb0_sFGA3egtBnbH30OoJdt09hgPSjIwjd3QWlTQdpCjZi52oLPfpi97a2vevbfmlb0AZxabxzxfXq6Non-j5jnrohZHuY0Yg05061qhG6adWh7cv_0B3NaSw_PVC6rWutmkJVR6rMJueE_uGBUnSHlXf_rLzwL-6tcz-ge6B_L1j_AgxXqvI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923944325</pqid></control><display><type>article</type><title>Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Zhenyu ; Zhang, Yan ; Hua, Yanying ; Chen, Guancheng ; Fu, Pengcheng ; Liu, Jing</creator><creatorcontrib>Zhang, Zhenyu ; Zhang, Yan ; Hua, Yanying ; Chen, Guancheng ; Fu, Pengcheng ; Liu, Jing</creatorcontrib><description>has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in K-01.</description><identifier>ISSN: 2304-8158</identifier><identifier>EISSN: 2304-8158</identifier><identifier>DOI: 10.3390/foods13030405</identifier><identifier>PMID: 38338539</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algae ; Aquatic microorganisms ; Bioavailability ; Biomass ; Biotransformation ; Carbon ; Carrying capacity ; Cell culture ; Chlorella ; Chlorella vulgaris ; Dose-response effects ; Electron microscopes ; Energy metabolism ; Functional foods &amp; nutraceuticals ; Gaussian process ; Glucose ; Growth curves ; heterotrophic cultivation ; Hypotheses ; Mass spectrometry ; Mass spectroscopy ; Metabolic response ; Metabolism ; Microalgae ; organic selenium ; Productivity ; Regression analysis ; Scanning electron microscopy ; Selenium ; Strain</subject><ispartof>Foods, 2024-01, Vol.13 (3), p.405</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03</citedby><cites>FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03</cites><orcidid>0000-0001-8850-9212 ; 0000-0002-2410-5232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2923944325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2923944325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38338539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Hua, Yanying</creatorcontrib><creatorcontrib>Chen, Guancheng</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><title>Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells</title><title>Foods</title><addtitle>Foods</addtitle><description>has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in K-01.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Bioavailability</subject><subject>Biomass</subject><subject>Biotransformation</subject><subject>Carbon</subject><subject>Carrying capacity</subject><subject>Cell culture</subject><subject>Chlorella</subject><subject>Chlorella vulgaris</subject><subject>Dose-response effects</subject><subject>Electron microscopes</subject><subject>Energy metabolism</subject><subject>Functional foods &amp; nutraceuticals</subject><subject>Gaussian process</subject><subject>Glucose</subject><subject>Growth curves</subject><subject>heterotrophic cultivation</subject><subject>Hypotheses</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Microalgae</subject><subject>organic selenium</subject><subject>Productivity</subject><subject>Regression analysis</subject><subject>Scanning electron microscopy</subject><subject>Selenium</subject><subject>Strain</subject><issn>2304-8158</issn><issn>2304-8158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtv1DAQgC0EolXpkSuyxIVDA34kuw63agV0RRESlHM0sce7XjmZxU4q8RP413i7pTx8mZH1zTf2DGPPpXitdSveeCKXpRZa1KJ5xE5VSSojG_P4r_yEnee8E-W0UhutnrKTErRpdHvKfl7hhImmRPttsPwrRhzDPPD1aCntKcEUaORhnIivtpESxgj8do4bSCHzj5WQb_8U3VDEBKPFC36ZcxhCvCu_4DA6_gUHuoXIp22iebPln4JNBEUU-apY8zP2xEPMeH4fz9i39-9uVlfV9ecP69XldWVrtZgqqV3T926x8Mp6B8JYgyBqIx2AWErdOIUtevAgvXFKguwb0_sFGA3egtBnbH30OoJdt09hgPSjIwjd3QWlTQdpCjZi52oLPfpi97a2vevbfmlb0AZxabxzxfXq6Non-j5jnrohZHuY0Yg05061qhG6adWh7cv_0B3NaSw_PVC6rWutmkJVR6rMJueE_uGBUnSHlXf_rLzwL-6tcz-ge6B_L1j_AgxXqvI</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Zhang, Zhenyu</creator><creator>Zhang, Yan</creator><creator>Hua, Yanying</creator><creator>Chen, Guancheng</creator><creator>Fu, Pengcheng</creator><creator>Liu, Jing</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8850-9212</orcidid><orcidid>https://orcid.org/0000-0002-2410-5232</orcidid></search><sort><creationdate>20240126</creationdate><title>Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells</title><author>Zhang, Zhenyu ; Zhang, Yan ; Hua, Yanying ; Chen, Guancheng ; Fu, Pengcheng ; Liu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Bioavailability</topic><topic>Biomass</topic><topic>Biotransformation</topic><topic>Carbon</topic><topic>Carrying capacity</topic><topic>Cell culture</topic><topic>Chlorella</topic><topic>Chlorella vulgaris</topic><topic>Dose-response effects</topic><topic>Electron microscopes</topic><topic>Energy metabolism</topic><topic>Functional foods &amp; nutraceuticals</topic><topic>Gaussian process</topic><topic>Glucose</topic><topic>Growth curves</topic><topic>heterotrophic cultivation</topic><topic>Hypotheses</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Microalgae</topic><topic>organic selenium</topic><topic>Productivity</topic><topic>Regression analysis</topic><topic>Scanning electron microscopy</topic><topic>Selenium</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Hua, Yanying</creatorcontrib><creatorcontrib>Chen, Guancheng</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Foods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenyu</au><au>Zhang, Yan</au><au>Hua, Yanying</au><au>Chen, Guancheng</au><au>Fu, Pengcheng</au><au>Liu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells</atitle><jtitle>Foods</jtitle><addtitle>Foods</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>13</volume><issue>3</issue><spage>405</spage><pages>405-</pages><issn>2304-8158</issn><eissn>2304-8158</eissn><abstract>has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into . This study aimed to investigate the potential of using K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 μg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in K-01.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38338539</pmid><doi>10.3390/foods13030405</doi><orcidid>https://orcid.org/0000-0001-8850-9212</orcidid><orcidid>https://orcid.org/0000-0002-2410-5232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-8158
ispartof Foods, 2024-01, Vol.13 (3), p.405
issn 2304-8158
2304-8158
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d4cabef048fc4cbdb9b7c9a38ee78fdd
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Algae
Aquatic microorganisms
Bioavailability
Biomass
Biotransformation
Carbon
Carrying capacity
Cell culture
Chlorella
Chlorella vulgaris
Dose-response effects
Electron microscopes
Energy metabolism
Functional foods & nutraceuticals
Gaussian process
Glucose
Growth curves
heterotrophic cultivation
Hypotheses
Mass spectrometry
Mass spectroscopy
Metabolic response
Metabolism
Microalgae
organic selenium
Productivity
Regression analysis
Scanning electron microscopy
Selenium
Strain
title Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterotrophic%20Selenium%20Incorporation%20into%20Chlorella%20vulgaris%20K-01:%20Selenium%20Tolerance,%20Assimilation,%20and%20Removal%20through%20Microalgal%20Cells&rft.jtitle=Foods&rft.au=Zhang,%20Zhenyu&rft.date=2024-01-26&rft.volume=13&rft.issue=3&rft.spage=405&rft.pages=405-&rft.issn=2304-8158&rft.eissn=2304-8158&rft_id=info:doi/10.3390/foods13030405&rft_dat=%3Cproquest_doaj_%3E2925035920%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-13d5bbd66f2cfda08c8ea0481daa07135d2e9efafa1f8d21a1b58bf6a83afca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923944325&rft_id=info:pmid/38338539&rfr_iscdi=true