Loading…

Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption

Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Capture Science & Technology 2024-03, Vol.10, p.100151, Article 100151
Main Authors: Gorbounov, Mikhail, Diaz-Vasseur, Emilie, Danaci, David, Masoudi Soltani, Salman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133
cites cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133
container_end_page
container_issue
container_start_page 100151
container_title Carbon Capture Science & Technology
container_volume 10
creator Gorbounov, Mikhail
Diaz-Vasseur, Emilie
Danaci, David
Masoudi Soltani, Salman
description Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.
doi_str_mv 10.1016/j.ccst.2023.100151
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772656823000556</els_id><doaj_id>oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9</doaj_id><sourcerecordid>S2772656823000556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsNR-AU_5AluTbHY3C16k-A8Kveg5TCZZm9JtSpIW_fZmWxFPnmZ4P95j5hXFLaNzRllzt5kjxjTnlFdZoKxmF8WEty0vm7qRl3_262IW44ZSymXddLSZFGaxtoND2BLA5I6QnN8R35O9D_4QCULQWbCfKWRuDemDH4h2foCYqR_0IZ4s2qeUCcQ16X0gixUnYKIP-5HeFFc9bKOd_cxp8f70-LZ4KZer59fFw7JEwWgqOWuFkR1qLTrOqKUMRF1x2VphoO6olRbbpjbAWSM4QzQA0uoKdc2kZFU1LV7PucbDRu2DGyB8KQ9OnQQfPhSE5HBrlRGm4rpHzkQtmKS67wUKBCk63VSmy1n8nIXBxxhs_5vHqBprVxs11q7G2tW59my6P5ts_vLobFARnd2hNS5YTPkM95_9G-5hjCY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><source>ScienceDirect Journals</source><creator>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</creator><creatorcontrib>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</creatorcontrib><description>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</description><identifier>ISSN: 2772-6568</identifier><identifier>EISSN: 2772-6568</identifier><identifier>DOI: 10.1016/j.ccst.2023.100151</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Activated carbon ; Adsorption ; Biomass combustion ash ; Carbon capture ; Chemical activation</subject><ispartof>Carbon Capture Science &amp; Technology, 2024-03, Vol.10, p.100151, Article 100151</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</citedby><cites>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</cites><orcidid>0000-0002-5983-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772656823000556$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Gorbounov, Mikhail</creatorcontrib><creatorcontrib>Diaz-Vasseur, Emilie</creatorcontrib><creatorcontrib>Danaci, David</creatorcontrib><creatorcontrib>Masoudi Soltani, Salman</creatorcontrib><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><title>Carbon Capture Science &amp; Technology</title><description>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Biomass combustion ash</subject><subject>Carbon capture</subject><subject>Chemical activation</subject><issn>2772-6568</issn><issn>2772-6568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxRdRsNR-AU_5AluTbHY3C16k-A8Kveg5TCZZm9JtSpIW_fZmWxFPnmZ4P95j5hXFLaNzRllzt5kjxjTnlFdZoKxmF8WEty0vm7qRl3_262IW44ZSymXddLSZFGaxtoND2BLA5I6QnN8R35O9D_4QCULQWbCfKWRuDemDH4h2foCYqR_0IZ4s2qeUCcQ16X0gixUnYKIP-5HeFFc9bKOd_cxp8f70-LZ4KZer59fFw7JEwWgqOWuFkR1qLTrOqKUMRF1x2VphoO6olRbbpjbAWSM4QzQA0uoKdc2kZFU1LV7PucbDRu2DGyB8KQ9OnQQfPhSE5HBrlRGm4rpHzkQtmKS67wUKBCk63VSmy1n8nIXBxxhs_5vHqBprVxs11q7G2tW59my6P5ts_vLobFARnd2hNS5YTPkM95_9G-5hjCY</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Gorbounov, Mikhail</creator><creator>Diaz-Vasseur, Emilie</creator><creator>Danaci, David</creator><creator>Masoudi Soltani, Salman</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5983-0397</orcidid></search><sort><creationdate>202403</creationdate><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><author>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Biomass combustion ash</topic><topic>Carbon capture</topic><topic>Chemical activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbounov, Mikhail</creatorcontrib><creatorcontrib>Diaz-Vasseur, Emilie</creatorcontrib><creatorcontrib>Danaci, David</creatorcontrib><creatorcontrib>Masoudi Soltani, Salman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon Capture Science &amp; Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbounov, Mikhail</au><au>Diaz-Vasseur, Emilie</au><au>Danaci, David</au><au>Masoudi Soltani, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</atitle><jtitle>Carbon Capture Science &amp; Technology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>10</volume><spage>100151</spage><pages>100151-</pages><artnum>100151</artnum><issn>2772-6568</issn><eissn>2772-6568</eissn><abstract>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ccst.2023.100151</doi><orcidid>https://orcid.org/0000-0002-5983-0397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-6568
ispartof Carbon Capture Science & Technology, 2024-03, Vol.10, p.100151, Article 100151
issn 2772-6568
2772-6568
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9
source ScienceDirect Journals
subjects Activated carbon
Adsorption
Biomass combustion ash
Carbon capture
Chemical activation
title Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20activation%20of%20porous%20carbon%20extracted%20from%20biomass%20combustion%20bottom%20ash%20for%20CO2%20adsorption&rft.jtitle=Carbon%20Capture%20Science%20&%20Technology&rft.au=Gorbounov,%20Mikhail&rft.date=2024-03&rft.volume=10&rft.spage=100151&rft.pages=100151-&rft.artnum=100151&rft.issn=2772-6568&rft.eissn=2772-6568&rft_id=info:doi/10.1016/j.ccst.2023.100151&rft_dat=%3Celsevier_doaj_%3ES2772656823000556%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true