Loading…
Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption
Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions...
Saved in:
Published in: | Carbon Capture Science & Technology 2024-03, Vol.10, p.100151, Article 100151 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133 |
container_end_page | |
container_issue | |
container_start_page | 100151 |
container_title | Carbon Capture Science & Technology |
container_volume | 10 |
creator | Gorbounov, Mikhail Diaz-Vasseur, Emilie Danaci, David Masoudi Soltani, Salman |
description | Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents. |
doi_str_mv | 10.1016/j.ccst.2023.100151 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772656823000556</els_id><doaj_id>oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9</doaj_id><sourcerecordid>S2772656823000556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsNR-AU_5AluTbHY3C16k-A8Kveg5TCZZm9JtSpIW_fZmWxFPnmZ4P95j5hXFLaNzRllzt5kjxjTnlFdZoKxmF8WEty0vm7qRl3_262IW44ZSymXddLSZFGaxtoND2BLA5I6QnN8R35O9D_4QCULQWbCfKWRuDemDH4h2foCYqR_0IZ4s2qeUCcQ16X0gixUnYKIP-5HeFFc9bKOd_cxp8f70-LZ4KZer59fFw7JEwWgqOWuFkR1qLTrOqKUMRF1x2VphoO6olRbbpjbAWSM4QzQA0uoKdc2kZFU1LV7PucbDRu2DGyB8KQ9OnQQfPhSE5HBrlRGm4rpHzkQtmKS67wUKBCk63VSmy1n8nIXBxxhs_5vHqBprVxs11q7G2tW59my6P5ts_vLobFARnd2hNS5YTPkM95_9G-5hjCY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><source>ScienceDirect Journals</source><creator>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</creator><creatorcontrib>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</creatorcontrib><description>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</description><identifier>ISSN: 2772-6568</identifier><identifier>EISSN: 2772-6568</identifier><identifier>DOI: 10.1016/j.ccst.2023.100151</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Activated carbon ; Adsorption ; Biomass combustion ash ; Carbon capture ; Chemical activation</subject><ispartof>Carbon Capture Science & Technology, 2024-03, Vol.10, p.100151, Article 100151</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</citedby><cites>FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</cites><orcidid>0000-0002-5983-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772656823000556$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Gorbounov, Mikhail</creatorcontrib><creatorcontrib>Diaz-Vasseur, Emilie</creatorcontrib><creatorcontrib>Danaci, David</creatorcontrib><creatorcontrib>Masoudi Soltani, Salman</creatorcontrib><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><title>Carbon Capture Science & Technology</title><description>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Biomass combustion ash</subject><subject>Carbon capture</subject><subject>Chemical activation</subject><issn>2772-6568</issn><issn>2772-6568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxRdRsNR-AU_5AluTbHY3C16k-A8Kveg5TCZZm9JtSpIW_fZmWxFPnmZ4P95j5hXFLaNzRllzt5kjxjTnlFdZoKxmF8WEty0vm7qRl3_262IW44ZSymXddLSZFGaxtoND2BLA5I6QnN8R35O9D_4QCULQWbCfKWRuDemDH4h2foCYqR_0IZ4s2qeUCcQ16X0gixUnYKIP-5HeFFc9bKOd_cxp8f70-LZ4KZer59fFw7JEwWgqOWuFkR1qLTrOqKUMRF1x2VphoO6olRbbpjbAWSM4QzQA0uoKdc2kZFU1LV7PucbDRu2DGyB8KQ9OnQQfPhSE5HBrlRGm4rpHzkQtmKS67wUKBCk63VSmy1n8nIXBxxhs_5vHqBprVxs11q7G2tW59my6P5ts_vLobFARnd2hNS5YTPkM95_9G-5hjCY</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Gorbounov, Mikhail</creator><creator>Diaz-Vasseur, Emilie</creator><creator>Danaci, David</creator><creator>Masoudi Soltani, Salman</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5983-0397</orcidid></search><sort><creationdate>202403</creationdate><title>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</title><author>Gorbounov, Mikhail ; Diaz-Vasseur, Emilie ; Danaci, David ; Masoudi Soltani, Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Biomass combustion ash</topic><topic>Carbon capture</topic><topic>Chemical activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorbounov, Mikhail</creatorcontrib><creatorcontrib>Diaz-Vasseur, Emilie</creatorcontrib><creatorcontrib>Danaci, David</creatorcontrib><creatorcontrib>Masoudi Soltani, Salman</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon Capture Science & Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorbounov, Mikhail</au><au>Diaz-Vasseur, Emilie</au><au>Danaci, David</au><au>Masoudi Soltani, Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption</atitle><jtitle>Carbon Capture Science & Technology</jtitle><date>2024-03</date><risdate>2024</risdate><volume>10</volume><spage>100151</spage><pages>100151-</pages><artnum>100151</artnum><issn>2772-6568</issn><eissn>2772-6568</eissn><abstract>Adsorption of CO2 by solid sorbents has been proposed as a pathway to decrease the emissions associated with combustion of fuels. However, if employing the waste residues of the combustion process (e.g. biomass combustion bottom ash), a pathway towards a green circular zero-waste and zero-emissions economy may be achieved. As such, a carbonaceous adsorbent has been produced (via chemical activation) using biomass combustion bottom ash as a precursor. This process entailed an intelligently designed experimental campaign based on a randomised Taguchi L9 orthogonal array, which revealed moderate activation temperatures (∼625 °C) and times (30 min) coupled with high ramp rates (10 – 15 °C/min) to be preferable. Following this method, a highly microporous (∼93 %) material was produced possessing a surface area of 643.6 m2/g. This, in turn, facilitated a substantial increase in CO2 uptake, namely, 1.29 mmol/g at 50 °C (quadruple that of the parent carbon and double that of the physically activated counterpart). Additionally, the working capacity as well as the heat of adsorption were measured. The latter properties are often overlooked with main focus drawn towards purely the adsorption capacity; however, they are imperative for industrial deployment of CO2 adsorbents.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ccst.2023.100151</doi><orcidid>https://orcid.org/0000-0002-5983-0397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-6568 |
ispartof | Carbon Capture Science & Technology, 2024-03, Vol.10, p.100151, Article 100151 |
issn | 2772-6568 2772-6568 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d4d32bfc21454180bff4c4ca849b63d9 |
source | ScienceDirect Journals |
subjects | Activated carbon Adsorption Biomass combustion ash Carbon capture Chemical activation |
title | Chemical activation of porous carbon extracted from biomass combustion bottom ash for CO2 adsorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20activation%20of%20porous%20carbon%20extracted%20from%20biomass%20combustion%20bottom%20ash%20for%20CO2%20adsorption&rft.jtitle=Carbon%20Capture%20Science%20&%20Technology&rft.au=Gorbounov,%20Mikhail&rft.date=2024-03&rft.volume=10&rft.spage=100151&rft.pages=100151-&rft.artnum=100151&rft.issn=2772-6568&rft.eissn=2772-6568&rft_id=info:doi/10.1016/j.ccst.2023.100151&rft_dat=%3Celsevier_doaj_%3ES2772656823000556%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-2174d89cbb49210e01a453287e4da590e8ec765da216421ccdaa8eb3cb5188133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |