Loading…
Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture
Perovskite solar cells have achieved remarkable enhancement in their performance in recent years. However, to get an entrance to the photovoltaic market, great effort is still necessary to further improve their efficiency as well as their long-term stability under various conditions. Among various t...
Saved in:
Published in: | Energies (Basel) 2021-08, Vol.14 (16), p.4836 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perovskite solar cells have achieved remarkable enhancement in their performance in recent years. However, to get an entrance to the photovoltaic market, great effort is still necessary to further improve their efficiency as well as their long-term stability under various conditions. Among various types of approaches (including compositional engineering, dopant engineering, self-assembled monolayers (SAMs), et al.), interfacial engineering through passivation treatment has been considered as one of the most effective strategies to reduce the non-radiative recombination within the PSCs. Thus, this short review summaries recent efforts on chemical interfacial passivation strategies from a different perspective owing to their common phenomena of reconstructing the perovskite surface via the formation of three-dimensional perovskite, low-dimensional perovskite and synergistic effect provided by a mixed-salt passivation system, respectively. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14164836 |