Loading…

Evolution of Ocean Color Atmospheric Correction: 1970–2005

Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordo...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2021-12, Vol.13 (24), p.5051
Main Author: Gordon, Howard R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3
cites cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3
container_end_page
container_issue 24
container_start_page 5051
container_title Remote sensing (Basel, Switzerland)
container_volume 13
creator Gordon, Howard R.
description Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.
doi_str_mv 10.3390/rs13245051
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb</doaj_id><sourcerecordid>2612845815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqb34Cxa8Cavv5WOTFS-ltFoo9NJ7yGazumXb1GQrePM_-A_9JaZW1PcObxiGecMQcolww1gJtyEio1yAwBMyoCBpzmlJT__hczKKcQ1pGMMS-IDcT199t-9bv818ky2tM9ts4jsfsnG_8XH37EJrExOCswfVXYalhM_3DwogLshZY7roRj93SFaz6WrymC-WD_PJeJFbVmCfO2Ql1qZoCksbKIzEGoVLEAtXWjCyUBXYtC6F4pVVyZtS40AqRmXDhmR-tK29WetdaDcmvGlvWv1N-PCkTehb2zldC8DSqqqSgnHhaqUsp5WppZHcyaZKXldHr13wL3sXe732-7BN6TUtkCouFIqkuj6qbPAxBtf8fkXQh671X9fsC_YnbmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612845815</pqid></control><display><type>article</type><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><source>Publicly Available Content (ProQuest)</source><creator>Gordon, Howard R.</creator><creatorcontrib>Gordon, Howard R.</creatorcontrib><description>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13245051</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerosol ; Aerosols ; Aircraft ; Algorithms ; Atmospheric correction ; Case 1 waters ; Case 2 waters ; Coastal waters ; Coastal zone ; Color ; dark target ; Evolutionary algorithms ; Light ; MODIS ; Ocean color ; Oceans ; Satellites ; Sensors ; Water properties ; water-leaving radiance</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-12, Vol.13 (24), p.5051</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</citedby><cites>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612845815/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612845815?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Gordon, Howard R.</creatorcontrib><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><title>Remote sensing (Basel, Switzerland)</title><description>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Atmospheric correction</subject><subject>Case 1 waters</subject><subject>Case 2 waters</subject><subject>Coastal waters</subject><subject>Coastal zone</subject><subject>Color</subject><subject>dark target</subject><subject>Evolutionary algorithms</subject><subject>Light</subject><subject>MODIS</subject><subject>Ocean color</subject><subject>Oceans</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Water properties</subject><subject>water-leaving radiance</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqb34Cxa8Cavv5WOTFS-ltFoo9NJ7yGazumXb1GQrePM_-A_9JaZW1PcObxiGecMQcolww1gJtyEio1yAwBMyoCBpzmlJT__hczKKcQ1pGMMS-IDcT199t-9bv818ky2tM9ts4jsfsnG_8XH37EJrExOCswfVXYalhM_3DwogLshZY7roRj93SFaz6WrymC-WD_PJeJFbVmCfO2Ql1qZoCksbKIzEGoVLEAtXWjCyUBXYtC6F4pVVyZtS40AqRmXDhmR-tK29WetdaDcmvGlvWv1N-PCkTehb2zldC8DSqqqSgnHhaqUsp5WppZHcyaZKXldHr13wL3sXe732-7BN6TUtkCouFIqkuj6qbPAxBtf8fkXQh671X9fsC_YnbmA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gordon, Howard R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><author>Gordon, Howard R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Atmospheric correction</topic><topic>Case 1 waters</topic><topic>Case 2 waters</topic><topic>Coastal waters</topic><topic>Coastal zone</topic><topic>Color</topic><topic>dark target</topic><topic>Evolutionary algorithms</topic><topic>Light</topic><topic>MODIS</topic><topic>Ocean color</topic><topic>Oceans</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Water properties</topic><topic>water-leaving radiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Howard R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Howard R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Ocean Color Atmospheric Correction: 1970–2005</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>24</issue><spage>5051</spage><pages>5051-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs13245051</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2021-12, Vol.13 (24), p.5051
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb
source Publicly Available Content (ProQuest)
subjects aerosol
Aerosols
Aircraft
Algorithms
Atmospheric correction
Case 1 waters
Case 2 waters
Coastal waters
Coastal zone
Color
dark target
Evolutionary algorithms
Light
MODIS
Ocean color
Oceans
Satellites
Sensors
Water properties
water-leaving radiance
title Evolution of Ocean Color Atmospheric Correction: 1970–2005
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Ocean%20Color%20Atmospheric%20Correction:%201970%E2%80%932005&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Gordon,%20Howard%20R.&rft.date=2021-12-01&rft.volume=13&rft.issue=24&rft.spage=5051&rft.pages=5051-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13245051&rft_dat=%3Cproquest_doaj_%3E2612845815%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612845815&rft_id=info:pmid/&rfr_iscdi=true