Loading…
Evolution of Ocean Color Atmospheric Correction: 1970–2005
Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordo...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-12, Vol.13 (24), p.5051 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3 |
container_end_page | |
container_issue | 24 |
container_start_page | 5051 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Gordon, Howard R. |
description | Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described. |
doi_str_mv | 10.3390/rs13245051 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb</doaj_id><sourcerecordid>2612845815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqb34Cxa8Cavv5WOTFS-ltFoo9NJ7yGazumXb1GQrePM_-A_9JaZW1PcObxiGecMQcolww1gJtyEio1yAwBMyoCBpzmlJT__hczKKcQ1pGMMS-IDcT199t-9bv818ky2tM9ts4jsfsnG_8XH37EJrExOCswfVXYalhM_3DwogLshZY7roRj93SFaz6WrymC-WD_PJeJFbVmCfO2Ql1qZoCksbKIzEGoVLEAtXWjCyUBXYtC6F4pVVyZtS40AqRmXDhmR-tK29WetdaDcmvGlvWv1N-PCkTehb2zldC8DSqqqSgnHhaqUsp5WppZHcyaZKXldHr13wL3sXe732-7BN6TUtkCouFIqkuj6qbPAxBtf8fkXQh671X9fsC_YnbmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612845815</pqid></control><display><type>article</type><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><source>Publicly Available Content (ProQuest)</source><creator>Gordon, Howard R.</creator><creatorcontrib>Gordon, Howard R.</creatorcontrib><description>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13245051</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerosol ; Aerosols ; Aircraft ; Algorithms ; Atmospheric correction ; Case 1 waters ; Case 2 waters ; Coastal waters ; Coastal zone ; Color ; dark target ; Evolutionary algorithms ; Light ; MODIS ; Ocean color ; Oceans ; Satellites ; Sensors ; Water properties ; water-leaving radiance</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-12, Vol.13 (24), p.5051</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</citedby><cites>FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612845815/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612845815?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Gordon, Howard R.</creatorcontrib><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><title>Remote sensing (Basel, Switzerland)</title><description>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</description><subject>aerosol</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Atmospheric correction</subject><subject>Case 1 waters</subject><subject>Case 2 waters</subject><subject>Coastal waters</subject><subject>Coastal zone</subject><subject>Color</subject><subject>dark target</subject><subject>Evolutionary algorithms</subject><subject>Light</subject><subject>MODIS</subject><subject>Ocean color</subject><subject>Oceans</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Water properties</subject><subject>water-leaving radiance</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqb34Cxa8Cavv5WOTFS-ltFoo9NJ7yGazumXb1GQrePM_-A_9JaZW1PcObxiGecMQcolww1gJtyEio1yAwBMyoCBpzmlJT__hczKKcQ1pGMMS-IDcT199t-9bv818ky2tM9ts4jsfsnG_8XH37EJrExOCswfVXYalhM_3DwogLshZY7roRj93SFaz6WrymC-WD_PJeJFbVmCfO2Ql1qZoCksbKIzEGoVLEAtXWjCyUBXYtC6F4pVVyZtS40AqRmXDhmR-tK29WetdaDcmvGlvWv1N-PCkTehb2zldC8DSqqqSgnHhaqUsp5WppZHcyaZKXldHr13wL3sXe732-7BN6TUtkCouFIqkuj6qbPAxBtf8fkXQh671X9fsC_YnbmA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gordon, Howard R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Evolution of Ocean Color Atmospheric Correction: 1970–2005</title><author>Gordon, Howard R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aerosol</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Atmospheric correction</topic><topic>Case 1 waters</topic><topic>Case 2 waters</topic><topic>Coastal waters</topic><topic>Coastal zone</topic><topic>Color</topic><topic>dark target</topic><topic>Evolutionary algorithms</topic><topic>Light</topic><topic>MODIS</topic><topic>Ocean color</topic><topic>Oceans</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Water properties</topic><topic>water-leaving radiance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Howard R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Howard R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Ocean Color Atmospheric Correction: 1970–2005</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>24</issue><spage>5051</spage><pages>5051-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs13245051</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-12, Vol.13 (24), p.5051 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d5019c8bb75345ed88c42bad7a74e7fb |
source | Publicly Available Content (ProQuest) |
subjects | aerosol Aerosols Aircraft Algorithms Atmospheric correction Case 1 waters Case 2 waters Coastal waters Coastal zone Color dark target Evolutionary algorithms Light MODIS Ocean color Oceans Satellites Sensors Water properties water-leaving radiance |
title | Evolution of Ocean Color Atmospheric Correction: 1970–2005 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Ocean%20Color%20Atmospheric%20Correction:%201970%E2%80%932005&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Gordon,%20Howard%20R.&rft.date=2021-12-01&rft.volume=13&rft.issue=24&rft.spage=5051&rft.pages=5051-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13245051&rft_dat=%3Cproquest_doaj_%3E2612845815%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-e1391da6f6c2f06a71d15e2f016e9c0a768b0c0c0e3194bc820022ae078327f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612845815&rft_id=info:pmid/&rfr_iscdi=true |