Loading…

Genetic parameters of pregnancy loss in dairy cows estimated from pregnancy-associated glycoproteins in milk

This study examined the feasibility of using pregnancy-associated glycoproteins (PAG) in milk within breeding for pregnancy maintenance and assessed the genetic variation in pregnancy loss traits. A total of 374,206 PAG samples from 41,889 Swedish Red (SR) and 82,187 Swedish Holstein (SH) cows were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2023-09, Vol.106 (9), p.6316-6324
Main Authors: Ask-Gullstrand, P., Strandberg, E., Båge, R., Berglund, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examined the feasibility of using pregnancy-associated glycoproteins (PAG) in milk within breeding for pregnancy maintenance and assessed the genetic variation in pregnancy loss traits. A total of 374,206 PAG samples from 41,889 Swedish Red (SR) and 82,187 Swedish Holstein (SH) cows were collected at monthly test-day milkings in 1,119 Swedish herds. Pregnancy status was defined based on PAG levels and confirmed by data on artificial insemination (AI), calving, and culling from d 1 postinsemination to calving. Pregnancy loss traits were defined as embryonic loss (diagnosed 28 d to 41 d after AI), fetal loss (42 d after AI until calving), and total pregnancy loss. Least squares means (± standard error, %) and genetic parameters were estimated using mixed linear models. Heritability was estimated to be 0.02, 0.02, and 0.03 for embryonic loss, fetal loss, and total pregnancy loss, respectively. Cows with pregnancy loss had lower PAG concentrations than cows which successfully maintained pregnancy and calved. PAG recording was limited to monthly test-day milking, resulting in low estimated embryonic loss (17.5 ± 0.4 and 18.7 ± 0.4 in SR and SH, respectively) and higher fetal loss (32.8 ± 0.5 and 35.1 ± 0.5 in SR and SH, respectively). Pregnancy loss might have occurred earlier but remained undetected until the next test-day milking, when it was recorded as fetal loss rather than embryonic loss. Estimated genetic correlation between embryonic and fetal pregnancy loss traits and classical fertility traits were in general high. Identification of novel genetic traits from PAG data can be highly specific, as PAG are only secreted by the placenta. Thus, PAG could be useful indicators in selection to genetically improve pregnancy maintenance and reduce reproductive losses in milk production. Further studies are needed to clarify how these results could be applied in breeding programs concurrent with selection for classical fertility traits.
ISSN:0022-0302
1525-3198
1525-3198
DOI:10.3168/jds.2022-23007