Loading…

Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks

A bstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, wel...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2019-04, Vol.2019 (4), p.1-43, Article 57
Main Authors: Karpie, Joseph, Orginos, Kostas, Rothkopf, Alexander, Zafeiropoulos, Savvas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03
cites cdi_FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03
container_end_page 43
container_issue 4
container_start_page 1
container_title The journal of high energy physics
container_volume 2019
creator Karpie, Joseph
Orginos, Kostas
Rothkopf, Alexander
Zafeiropoulos, Savvas
description A bstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x -dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.
doi_str_mv 10.1007/JHEP04(2019)057
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d535279b6d084732bd3107472dd3d003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d535279b6d084732bd3107472dd3d003</doaj_id><sourcerecordid>2203602111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03</originalsourceid><addsrcrecordid>eNp1UU1vEzEUXCGQKIUzVwsucAh9z_Z619xoVdqgSiAEZ8tfmzpN7GB7hfrvcdgKuHB6z6OZkedN171EeIcAw9mn68svwN9QQPkW-uFRd4JA5Wrkg3z8z_60e1bKFgB7lHDS3X31NsVS82xriBty0LmmSFxoUDBzDe0xzdEel0KmnPZknabJkxr2njhd9fsFPdf3vgQdyd7X2-QKqYlEP2e9a6P-TPmuPO-eTHpX_IuHedp9_3j57eJ6dfP5an3x4WZle4S6MhK9pEYYISY5CgkouB3dSO3IJ0_5KBhwii1oLzj3QCkyZyxyYdxgLLDTbr34uqS36pDDXud7lXRQv4GUN6qlDHbnletZTwdphIN2HEaNYwgDH6hzzAGw5vVq8UqlBlVsqN7etotFb6vCnnLsj6TXC-mQ04_Zl6q2ac6xZVSUAhNAEbGxzhaWzamU7Kc_X0NQxwrVUqE6VqhahU0Bi6I0Ztz4_Nf3f5JfEDWcaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203602111</pqid></control><display><type>article</type><title>Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Karpie, Joseph ; Orginos, Kostas ; Rothkopf, Alexander ; Zafeiropoulos, Savvas</creator><creatorcontrib>Karpie, Joseph ; Orginos, Kostas ; Rothkopf, Alexander ; Zafeiropoulos, Savvas ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States) ; Heidelberg Univ. (Germany) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><description>A bstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x -dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2019)057</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Classical and Quantum Gravitation ; Computer simulation ; Dependence ; Distribution functions ; Elementary Particles ; First principles ; Fourier transforms ; Hadrons ; High energy physics ; Ill posed problems ; Inverse problems ; Lattice QCD ; Lattice Quantum Field Theory ; Neural networks ; Nuclear physics ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Numerical methods ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum chromodynamics ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Regularization ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2019-04, Vol.2019 (4), p.1-43, Article 57</ispartof><rights>The Author(s) 2019</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03</citedby><cites>FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2203602111/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2203602111?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,44571,74875</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1524153$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karpie, Joseph</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Rothkopf, Alexander</creatorcontrib><creatorcontrib>Zafeiropoulos, Savvas</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><creatorcontrib>Heidelberg Univ. (Germany)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><title>Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x -dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.</description><subject>Bayesian analysis</subject><subject>Classical and Quantum Gravitation</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Distribution functions</subject><subject>Elementary Particles</subject><subject>First principles</subject><subject>Fourier transforms</subject><subject>Hadrons</subject><subject>High energy physics</subject><subject>Ill posed problems</subject><subject>Inverse problems</subject><subject>Lattice QCD</subject><subject>Lattice Quantum Field Theory</subject><subject>Neural networks</subject><subject>Nuclear physics</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum chromodynamics</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Regularization</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1vEzEUXCGQKIUzVwsucAh9z_Z619xoVdqgSiAEZ8tfmzpN7GB7hfrvcdgKuHB6z6OZkedN171EeIcAw9mn68svwN9QQPkW-uFRd4JA5Wrkg3z8z_60e1bKFgB7lHDS3X31NsVS82xriBty0LmmSFxoUDBzDe0xzdEel0KmnPZknabJkxr2njhd9fsFPdf3vgQdyd7X2-QKqYlEP2e9a6P-TPmuPO-eTHpX_IuHedp9_3j57eJ6dfP5an3x4WZle4S6MhK9pEYYISY5CgkouB3dSO3IJ0_5KBhwii1oLzj3QCkyZyxyYdxgLLDTbr34uqS36pDDXud7lXRQv4GUN6qlDHbnletZTwdphIN2HEaNYwgDH6hzzAGw5vVq8UqlBlVsqN7etotFb6vCnnLsj6TXC-mQ04_Zl6q2ac6xZVSUAhNAEbGxzhaWzamU7Kc_X0NQxwrVUqE6VqhahU0Bi6I0Ztz4_Nf3f5JfEDWcaQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Karpie, Joseph</creator><creator>Orginos, Kostas</creator><creator>Rothkopf, Alexander</creator><creator>Zafeiropoulos, Savvas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Berlin</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20190401</creationdate><title>Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks</title><author>Karpie, Joseph ; Orginos, Kostas ; Rothkopf, Alexander ; Zafeiropoulos, Savvas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Classical and Quantum Gravitation</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Distribution functions</topic><topic>Elementary Particles</topic><topic>First principles</topic><topic>Fourier transforms</topic><topic>Hadrons</topic><topic>High energy physics</topic><topic>Ill posed problems</topic><topic>Inverse problems</topic><topic>Lattice QCD</topic><topic>Lattice Quantum Field Theory</topic><topic>Neural networks</topic><topic>Nuclear physics</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum chromodynamics</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Regularization</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpie, Joseph</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Rothkopf, Alexander</creatorcontrib><creatorcontrib>Zafeiropoulos, Savvas</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><creatorcontrib>Heidelberg Univ. (Germany)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>College of William and Mary, Williamsburg, VA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpie, Joseph</au><au>Orginos, Kostas</au><au>Rothkopf, Alexander</au><au>Zafeiropoulos, Savvas</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><aucorp>Heidelberg Univ. (Germany)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>College of William and Mary, Williamsburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>2019</volume><issue>4</issue><spage>1</spage><epage>43</epage><pages>1-43</pages><artnum>57</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x -dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2019)057</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2019-04, Vol.2019 (4), p.1-43, Article 57
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d535279b6d084732bd3107472dd3d003
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Bayesian analysis
Classical and Quantum Gravitation
Computer simulation
Dependence
Distribution functions
Elementary Particles
First principles
Fourier transforms
Hadrons
High energy physics
Ill posed problems
Inverse problems
Lattice QCD
Lattice Quantum Field Theory
Neural networks
Nuclear physics
NUCLEAR PHYSICS AND RADIATION PHYSICS
Numerical methods
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Regularization
Relativity Theory
String Theory
title Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstructing%20parton%20distribution%20functions%20from%20Ioffe%20time%20data:%20from%20Bayesian%20methods%20to%20neural%20networks&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Karpie,%20Joseph&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2019-04-01&rft.volume=2019&rft.issue=4&rft.spage=1&rft.epage=43&rft.pages=1-43&rft.artnum=57&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2019)057&rft_dat=%3Cproquest_doaj_%3E2203602111%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-b91e92b6b66f98690164c8d82c84fe2486304212015644e02213dbc146bd7bc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203602111&rft_id=info:pmid/&rfr_iscdi=true