Loading…
Rationally Managed Pastures Stock More Carbon than No-Tillage Fields
A significant share of Greenhouse Gases (GHG) produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, h...
Saved in:
Published in: | Frontiers in environmental science 2017-12, Vol.5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A significant share of Greenhouse Gases (GHG) produced from agriculture comes from cattle farming. The reduction in GHG emissions from ruminants fed with grains has led some researchers to recommend such a diet as a means of mitigating emissions in the sector. A more accurate balance of emissions, however, must include the carbon (C) stocked by feed crops. Within the grain production system, no-tillage (NT) cultivation systems have a greater capacity to increase and store soil organic carbon (SOC). Within grazing management systems, the rotation used in Voisin’s Rational Grazing (VRG) allows the accumulation of SOC through root growth. The objective of this study was to assess the C stock of pasture under VRG and compare soil C stock between VRG pasture and fields under no-tillage management, in two seasons over a period of one year. The study included five dairy farms in Santa Catarina State, Brazil. In each property, we collected soil to quantify SOC from VRG pasture and NT fields, in summer and winter. In the pasture, to determine the total stock, we also collected samples from the aerial parts of plants and the roots. Further, we estimated how efficient would be producing milk from those pastures or from those crops. The VRG pasture showed a greater capacity to stock C in the soil than the no-tillage fields (VRG=115.0 Mg C ha-1; NT=92.5 Mg C ha-1; p |
---|---|
ISSN: | 2296-665X 2296-665X |
DOI: | 10.3389/fenvs.2017.00087 |